Swastika Banerjee | Materials | Best Researcher Award

Assist. Prof. Dr. Swastika Banerjee | Materials | Best Researcher Award

Assistant Professor | Indian Institute of Technology Roorkee | India

Dr. Swastika Banerjee is a distinguished computational chemist and materials scientist, currently serving as an Assistant Professor in the Department of Chemistry at IIT Roorkee, India. With a strong research background in theoretical chemistry and materials informatics, she has made significant contributions to energy storage, electrochemistry, and computational materials design. Her work integrates advanced simulation techniques to develop novel materials for sustainable energy solutions.

Profile

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

Diverse Research Experience – With multiple postdoctoral positions at UC San Diego, University of Luxembourg, Lawrence Berkeley National Laboratory, and Shenzhen University, Banerjee has gained international exposure and collaborated with world-class researchers.

Impactful Publications – Her research is published in high-impact journals such as Nature Communications, Journal of the American Chemical Society (JACS), Advanced Functional Materials, and ACS Applied Materials & Interfaces, demonstrating strong research impact. Many of these papers are as a corresponding author, indicating leadership in her field.

Strong Contributions to Energy Storage and Materials Science – Her computational work on lithium-ion batteries, sodium-ion batteries, and solid electrolytes contributes significantly to advancing next-generation energy storage solutions, which are crucial for sustainable energy applications.

Research Grants & Fellowships – She has secured competitive research grants such as the EMR-II/ASPIRE Grant (2024), Faculty Initiation Grant (IIT Roorkee, 2022), Core Research Grant (SERB, DST, India, 2022), and was offered the Ramanujan Fellowship and Alexander von Humboldt Fellowship.

Patents & Innovations – A patent on “Chlorine-based sodium solid electrolyte” highlights her ability to translate research into practical applications, an essential factor for the award.

Recognized Expertise – She serves as a reviewer for high-impact journals (Angewandte Chemie, Chemistry of Materials, Joule, Nature Communications), showcasing her standing in the scientific community.

Education 🎓

Dr. Banerjee obtained her Ph.D. from the Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore (2011-2017). Prior to that, she earned an M.Sc. in Chemistry from IIT Kharagpur (2009-2011), securing the 3rd rank in her batch, and a B.Sc. in Chemistry (Hons) from The University of Burdwan (2006-2009), where she achieved the 1st rank in her university.

Experience 💼

  • Assistant Professor, IIT Roorkee (2022-Present)
  • Postdoctoral Associate, University of Luxembourg (Aug 2021 – Mar 2022)
  • Postdoctoral Associate, University of California San Diego, USA (Mar 2019 – Jul 2021)
  • Postdoctoral Researcher & Affiliate, Lawrence Berkeley National Laboratory & Shenzhen University, China (Jul 2017 – Feb 2019)
  • Research Associate, Jawaharlal Nehru Center for Advanced Scientific Research, India (Jan 2017 – Jun 2017)
  • Visiting Scientist, Institute of Semiconductors, Chinese Academy of Science, China (Nov 2016 – Dec 2016)

Research Interests On Materials🔍

Dr. Banerjee’s research focuses on computational materials science, exploring:

  • Non-local many-body dispersion interactions in materials
  • Electrochemistry and interfacial phenomena
  • Battery materials and energy storage solutions
  • Non-adiabaticity in chemical reactions
  • Thermoelectric properties of nanostructures
  • First-principles electronic structure theory
  • Algorithmic development for large-scale simulations
  • Materials informatics and data infrastructure

Research Contributions 🎯

Dr. Banerjee has advanced computational methods such as Density Functional Theory (DFT), Boltzmann Transport Equation modeling, and Non-Adiabatic Molecular Dynamics to study energy storage materials, excited state dynamics, and charge transport in semiconductors. Her theoretical insights have led to new frameworks for lithium superionic conductors and efficient electrode materials for next-generation batteries.

Awards & Recognitions 🏆

  • EMR-II/ASPIRE Grant, CSIR, India (2024)
  • Faculty Initiation Grant, IIT Roorkee (2022)
  • Core Research Grant, SERB, DST, India (2022)
  • Best Poster Awards at Chemical Frontiers (2015), Theoretical Chemistry Symposium (2014), Winter School on Frontiers in Materials (2014), and STCC-FC (2013)
  • Jawaharlal Nehru Memorial Award for securing 1st rank in The University of Burdwan (2010)
  • Alexander von Humboldt Fellowship for Postdoctoral Research (declined, 2021)
  • Ramanujan Fellowship (declined, 2021)
  • National Key R&D Program of China & National Natural Science Foundation of China Grants (2017)
  • Merit Scholarship, IIT Kharagpur (2010-2011)

Publications 📚

  1. Rechargeable alkali-ion battery materials: theory and computation

    • Authors: A Van der Ven, Z Deng, S Banerjee, SP Ong
    • Year: 2020
    • Citations: 255
  2. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries

    • Authors: EA Wu, S Banerjee, H Tang, PM Richardson, JM Doux, J Qi, Z Zhu, …
    • Year: 2021
    • Citations: 196
  3. Tunable Lithium-Ion Transport in Mixed-Halide Argyrodites Li6–xPS5–xClBrx: An Unusual Compositional Space

    • Authors: SV Patel, S Banerjee, H Liu, P Wang, PH Chien, X Feng, J Liu, SP Ong, …
    • Year: 2021
    • Citations: 136
  4. Possible application of 2D-boron sheets as anode material in lithium ion battery: A DFT and AIMD study

    • Authors: S Banerjee, G Periyasamy, SK Pati
    • Year: 2014
    • Citations: 99
  5. Bridging the gap between simulated and experimental ionic conductivities in lithium superionic conductors

    • Authors: J Qi, S Banerjee, Y Zuo, C Chen, Z Zhu, MLH Chandrappa, X Li, SP Ong
    • Year: 2021
    • Citations: 84
  6. Origin of the Order–Disorder Transition and the Associated Anomalous Change of Thermopower in AgBiS2 Nanocrystals: A Combined Experimental and Theoretical Study

    • Authors: SN Guin, S Banerjee, D Sanyal, SK Pati, K Biswas
    • Year: 2016
    • Citations: 52
  7. Anodic performance of black phosphorus in magnesium-ion batteries: the significance of Mg–P bond-synergy

    • Authors: S Banerjee, SK Pati
    • Year: 2016
    • Citations: 49
  8. Thermodynamics and kinetics of the cathode–electrolyte interface in all-solid-state Li–S batteries

    • Authors: ML Holekevi Chandrappa, J Qi, C Chen, S Banerjee, SP Ong
    • Year: 2022
    • Citations: 46
  9. Motif-based design of an oxysulfide class of lithium superionic conductors: Toward improved stability and record-high Li-ion conductivity

    • Authors: S Banerjee, X Zhang, LW Wang
    • Year: 2019
    • Citations: 31
  10. Synthetic control of structure and conduction properties in Na–Y–Zr–Cl solid electrolytes

  • Authors: E Sebti, J Qi, PM Richardson, P Ridley, EA Wu, S Banerjee, R Giovine, …
  • Year: 2022
  • Citations: 30

Conclusion 🔖

Dr. Swastika Banerjee is a leading scientist in the field of computational chemistry and materials science. With a deep understanding of first-principles simulations and data-driven materials design, she continues to push the boundaries of sustainable energy research. Through her academic and research contributions, she is shaping the future of next-generation energy storage and electronic materials development.

Chuan-Pei Lee | Materials | Best Researcher Award

Assoc. Prof. Dr. Chuan-Pei Lee | Materials | Best Researcher Award

Associate Professor | Department of Applied Physics and Chemistry, University of Taipei | Taiwan

Dr. Chuan-Pei Lee is an esteemed Associate Professor in the Department of Applied Physics and Chemistry at the University of Taipei, Taiwan. With a strong background in chemical engineering and a passion for nanomaterials and renewable energy, he has significantly contributed to the fields of nanotechnology, solar fuels, water splitting, and supercapacitors. His extensive research in electrochemical techniques has established him as a leading figure in energy-related applications. To date, Dr. Lee has authored 13 book chapters and 117 SCI papers, garnering over 5,470 citations and an H-index of 44.

Profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Outstanding Research Output 📚

    • Published 117 SCI papers, reflecting a strong research presence.
    • Contributed 13 book chapters, further demonstrating academic influence.
  • High Impact and Citation Metrics 📈

    • Google Scholar Citations: 5470
    • H-index: 44, showing significant contributions to the field.
    • Publications in prestigious journals like ACS Applied Materials & Interfaces, Nano Energy, J. Mater. Chem. A, and Materials Today Energy.
  • Diverse and Impactful Research Areas 🌍

    • Expertise in nanomaterials, solar energy, water splitting, and supercapacitors.
    • Work contributes to renewable energy solutions and sustainability.
    • Strong command over electrochemical techniques, crucial for energy storage research.
  • Collaboration and International Recognition 🤝

    • Co-authored papers with international research teams.
    • Worked with notable researchers from National Taiwan University, University of California, and RSC-affiliated institutions.

🎓 Education

  • Ph.D. in Chemical Engineering – National Taiwan University (2012)

💼 Experience

  • Associate Professor – Department of Applied Physics and Chemistry, University of Taipei, Taiwan (Present)
  • Research Collaborator – Various international research institutions focusing on nanomaterials and energy storage technologies.

🔬 Research Interests On Materials

Dr. Lee’s research revolves around the development of advanced materials for energy applications. His key areas of interest include:

  • Nanomaterials/Nanostructures – Synthesis and applications in energy storage and conversion.
  • Solar Energy & Solar Fuels – Enhancing the efficiency of solar energy harvesting and utilization.
  • Water Splitting Technology – Exploring innovative electrocatalysts for hydrogen production.
  • Supercapacitors – Designing high-performance electrodes for energy storage solutions.
  • Electrochemical Techniques – Studying charge transfer mechanisms and optimizing material properties for enhanced efficiency.

🏆 Awards & Recognitions

  • Recognized as a leading researcher in energy materials with a high citation index (H-index: 44).
  • Numerous awards for excellence in research and innovation in applied physics and chemistry.
  • Invited keynote speaker at multiple international conferences on nanotechnology and renewable energy.

📚 Selected Publications

Dr. Lee has published extensively in top-tier journals. Below are some of his notable works:

  1. Use of organic materials in dye-sensitized solar cells

    • Authors: CP Lee, CT Li, KC Ho
    • Year: 2017
    • Citations: 336
  2. Recent progress in organic sensitizers for dye-sensitized solar cells

    • Authors: CP Lee, RYY Lin, LY Lin, CT Li, TC Chu, SS Sun, JT Lin, KC Ho
    • Year: 2015
    • Citations: 273
  3. Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties

    • Authors: A Venkateswararao, KRJ Thomas, CP Lee, CT Li, KC Ho
    • Year: 2014
    • Citations: 202
  4. A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells

    • Authors: CP Lee, KY Lai, CA Lin, CT Li, KC Ho, CI Wu, SP Lau, JH He
    • Year: 2017
    • Citations: 159
  5. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte

    • Authors: MH Yeh, CP Lee, CY Chou, LY Lin, HY Wei, CW Chu, R Vittal, KC Ho
    • Year: 2011
    • Citations: 142
  6. Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black

    • Authors: CP Lee, PY Chen, R Vittal, KC Ho
    • Year: 2010
    • Citations: 136
  7. Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells

    • Authors: JY Li, CY Chen, CP Lee, SC Chen, TH Lin, HH Tsai, KC Ho, CG Wu
    • Year: 2010
    • Citations: 109
  8. 2,7-Diaminofluorene-based organic dyes for dye-sensitized solar cells: effect of auxiliary donor on optical and electrochemical properties

    • Authors: A Baheti, P Singh, CP Lee, KRJ Thomas, KC Ho
    • Year: 2011
    • Citations: 107
  9. Beaded stream-like CoSe₂ nanoneedle array for efficient hydrogen evolution electrocatalysis

    • Authors: CP Lee, WF Chen, T Billo, YG Lin, FY Fu, S Samireddi, CH Lee, …
    • Year: 2016
    • Citations: 97
  10. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells

  • Authors: A Baheti, KR Justin Thomas, CT Li, CP Lee, KC Ho
  • Year: 2015
  • Citations: 95

 

🔍 Conclusion

Dr. Chuan-Pei Lee is a distinguished researcher and academic in the field of applied physics and chemistry, with a deep expertise in nanomaterials, solar energy, and electrochemical energy storage. His groundbreaking research has significantly advanced energy-efficient technologies, leading to innovations in supercapacitors, solar cells, and water splitting techniques. His extensive publication record, high citation impact, and contributions to the scientific community underscore his status as a leading expert in his field. As an influential scientist, Dr. Lee continues to inspire and contribute to the advancement of sustainable energy solutions.

Heidar Raissi | 2D Materials and Beyond | Best Researcher Award

Prof. Dr. Heidar Raissi | 2D Materials and Beyond | Best Researcher Award

Professor in physical chemistry | University of birjand | Iran

Heidar Raissi is a distinguished professor in the Department of Chemistry at the Faculty of Science. His research primarily focuses on theoretical chemistry, specifically quantum mechanical studies of molecular interactions, including hydrogen bonding and the adsorption of drug molecules on various nanomaterials. His work has garnered international recognition for advancing the understanding of molecular dynamics and computational chemistry.

Profile

Scholar

Strengths for the Award

  1. Extensive Research Contributions: Professor Heidar Raissi has a significant body of work, particularly in theoretical and computational chemistry, as evidenced by his numerous publications in high-impact journals like Polymer Bulletin, Scientific Reports, and Journal of Biomolecular Structure and Dynamics. His research spans various topics such as drug delivery systems, molecular dynamics, and nanomaterials, with an emphasis on cancer therapeutics and molecular simulations.
  2. Focus on Cutting-Edge Topics: His work on computational studies of drug interactions, nanomaterials, and environmental processes highlights his involvement in highly relevant, contemporary research areas. For example, his contributions to drug delivery via carbon nanotubes, the investigation of anticancer drugs, and the use of nanostructures in environmental remediation (e.g., gas adsorption, wastewater treatment) are critical in addressing global health and environmental issues.
  3. Collaborative Efforts: Professor Raissi’s collaborations with a wide range of researchers, evident from his co-authorship in multiple journal papers and conference presentations, suggests a strong network within the academic and research community. This enhances the impact of his research and positions him as a key contributor in his field.
  4. Strong Presence in Academic Conferences: His involvement in numerous national and international conferences demonstrates an active engagement with the broader scientific community. Presenting at high-level conferences, such as the International Congress on Chemistry and Nano-Chemistry and Iranian Chemical Society Conferences, reflects his commitment to sharing knowledge and fostering dialogue within the scientific community.
  5. Cross-Disciplinary Expertise: Raissi’s research spans multiple disciplines, including computational chemistry, nanotechnology, and materials science, particularly in the context of drug design and environmental chemistry. His interdisciplinary expertise is highly valuable for addressing complex global challenges, particularly in healthcare and environmental sustainability.

Education 🎓

Professor Raissi holds a deep academic background in chemistry, specializing in computational and theoretical approaches to molecular interactions. His expertise spans various fields, including nanotechnology, drug delivery systems, and material science. Although specific educational qualifications are not listed, his extensive body of work and involvement in high-level research speaks to his advanced training in the field.

Experience 🧑‍🏫

With decades of experience, Professor Raissi has contributed significantly to the development of computational methods in chemistry. He has worked on numerous projects that utilize density functional theory (DFT) and molecular dynamics simulations to explore the properties and interactions of molecules in complex systems. His teaching and research have positively impacted both academic circles and industrial applications, particularly in drug delivery technologies and material science.

Research Interests 🔬

Professor Raissi’s research focuses on theoretical studies of molecular systems, particularly those involving quantum chemistry and molecular dynamics. He is highly involved in the exploration of molecular interactions, including hydrogen bonding, drug adsorption on nanostructured materials, and the application of computational methods to predict molecular behavior. His interest also includes the development of advanced materials for drug delivery and nanotechnology applications, particularly in cancer treatment.

Awards 🏆

Professor Raissi has received various accolades for his groundbreaking research in computational chemistry. While specific awards are not listed in the provided information, his recognition at international conferences and contributions to high-impact journals, such as Polymer Bulletin and Scientific Reports, underscore his esteemed position in the field of chemistry. His continued involvement in conferences and symposiums highlights his active participation in advancing scientific knowledge.

Publications 📚

  • Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative approach
    • Authors: M Kamel, H Raissi, A Morsali, M Shahabi
    • Year: 2018
    • Cited by: 108
  • Understanding loading, diffusion and releasing of doxorubicin and paclitaxel dual delivery in graphene and graphene oxide carriers as highly efficient drug delivery systems
    • Authors: H Hashemzadeh, H Raissi
    • Year: 2020
    • Cited by: 106
  • DFT calculations and molecular dynamics simulation study on the adsorption of 5-fluorouracil anticancer drug on graphene oxide nanosheet as a drug delivery vehicle
    • Authors: F Safdari, H Raissi, M Shahabi, M Zaboli
    • Year: 2017
    • Cited by: 99
  • The presentation of an approach for estimating the intramolecular hydrogen bond strength in conformational study of β-Aminoacrolein
    • Authors: AR Nowroozi, H Raissi, F Farzad
    • Year: 2005
    • Cited by: 92
  • The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: A DFT study
    • Authors: M Yoosefian, H Raissi, A Mola
    • Year: 2015
    • Cited by: 91
  • On the pseudocapacitive behavior of nanostructured molybdenum oxide
    • Authors: H Farsi, F Gobal, H Raissi, S Moghiminia
    • Year: 2010
    • Cited by: 84
  • Covalent organic framework as smart and high efficient carrier for anticancer drug delivery: A DFT calculations and molecular dynamics simulation study
    • Authors: H Hashemzadeh, H Raissi
    • Year: 2018
    • Cited by: 80
  • Theoretical study of solvent and co-solvent effects on the interaction of Flutamide anticancer drug with Carbon nanotube as a drug delivery system
    • Authors: M Kamel, H Raissi, A Morsali
    • Year: 2017
    • Cited by: 73
  • Density functional theory calculations and molecular dynamics simulations of the adsorption of ellipticine anticancer drug on graphene oxide surface in aqueous medium as well as drug delivery system
    • Authors: Z Hasanzade, H Raissi
    • Year: 2018
    • Cited by: 70
  • Theoretical insights into the intermolecular and mechanisms of covalent interaction of Flutamide drug with COOH and COCl functionalized carbon nanotubes: a DFT approach
    • Authors: M Kamel, A Morsali, H Raissi, K Mohammadifard
    • Year: 2020
    • Cited by: 68

Conclusion 📖

Professor Heidar Raissi has made invaluable contributions to the fields of theoretical and computational chemistry. His research, which blends quantum mechanics and molecular dynamics, is pivotal in the development of new materials for drug delivery, particularly in cancer therapies. Through his academic journey, he has built a solid reputation for his meticulous studies and collaborative efforts, and his work continues to inspire future research in nanotechnology and material science. His extensive publication record and recognition in scientific communities solidify his status as a leading expert in his field.