Sandeep Kumar Singh | Chemistry and Materials Science | Best Researcher Award

Mr. Sandeep Kumar Singh | Chemistry and Materials Science | Best Researcher Award

National Institute of Technology Nagaland | India

Mr. Sandeep Kumar Singh is an emerging researcher in the field of Mechanical Engineering with specialized expertise in nanomaterials synthesis, polymer matrix composites, and hybrid fiber-reinforced polymer (FRP) materials. His research primarily focuses on developing advanced multifunctional composites through the surface functionalization of nanofillers such as graphene oxide, titanium dioxide (TiO₂), and silicon carbide to enhance mechanical, thermal, and tribological performance. He has published several high-impact articles in SCI-indexed journals including Polymer Composites, High Performance Polymers, Journal of Adhesion Science and Technology, and Advanced Engineering Materials, reflecting his significant contributions to materials design and nanocomposite technology. His investigations have led to new insights into fracture resistance, wear properties, and interface optimization in hybrid GFRP laminates and epoxy nanocomposites. In addition to journal publications, he has authored book chapters with international publishers like Springer, addressing advancements in sustainable nanocomposites and two-dimensional carbon-based materials. He has presented his research at prominent international conferences in the UK, Türkiye, and India, earning academic recognition for innovation and excellence. As a reviewer for reputed journals under Wiley, Springer Nature, and Taylor & Francis, he actively contributes to scholarly quality and peer evaluation in material science. His ongoing research endeavors aim to bridge the gap between nanotechnology and industrial applications, particularly in the fabrication of high-strength, lightweight composites for aerospace, automotive, and structural sectors. According to Google Scholar, his research has received 35 citations, with an h-index of 3 and an i10-index of 1, underscoring his growing impact and recognition within the global materials research community.

Profiles: Google Scholar | ORCID

Featured Publications

  • Singh, S. K., Nayak, B., Singh, T. J., & Halder, S. (2023). Investigating the role of synthesized reduced graphene oxide and graphite micro-fillers on mechanical and fretting wear performance of glass fiber epoxy-based composite. High Performance Polymers, 35(9), 946–962. https://doi.org/10.1177/095400832311XXXX

  • Singh, S. K., Singh, T. J., Nayak, B., Sonker, P. K., & Singh, M. A. (2024). Analysis of the impact of exfoliated graphene oxide on the mechanical performance and in-plane fracture resistance of epoxy-based nanocomposite. High Performance Polymers, 36(9–10), 487–507. https://doi.org/10.1177/095400832412XXXX

  • Singh, S. K., Singh, T. J., Halder, S., & Khan, N. I. (2025). Investigation of mechanical and thermo-mechanical properties of dopamine-functionalized TiO₂/epoxy nanocomposites. Polymer Composites. https://doi.org/10.1002/pc.XXXX

  • Verma, Y. K., Singh, A. K., Singh, S. K., Dutta, S., & Paswan, M. K. (2025). Comprehensive analysis of enhanced thermal and mechanical properties in vacuum pressure impregnated (VPI) treated Chimono bamboo fibers through surface treatment with sodium hydroxide. Journal of Wood Chemistry and Technology, 45(1), 43–62. https://doi.org/10.1080/02773813.2025.XXXX

  • Singh, S. K., Singh, T. J., Singh, L. D., Sonker, P. K., & Mazumder, B. (2024). Experimental study on the impact of hybrid GFRP composites with graphene oxide and silicon carbide fillers on mechanical and wear properties. Journal of Adhesion Science and Technology. https://doi.org/10.1080/01694243.2024.XXXX

Hyesung Park | Chemistry and Materials Science | Best Researcher Award

Prof. Dr. Hyesung Park | Chemistry and Materials Science | Best Researcher Award

Korea University | South Korea

Dr. Hyesung Park, a distinguished Professor at Korea University, is an internationally recognized authority in hetero-dimensional materials synthesis and their applications in functional devices, including energy harvesting, nanoelectronics, and nanophotonics. His academic journey spans world-leading institutions such as MIT, Northwestern University, and UNIST, where he has consistently advanced renewable energy technologies and next-generation device engineering. He earned his Ph.D. in Electrical Engineering and Computer Science from MIT with groundbreaking research on CVD graphene for organic photovoltaics, pioneering innovations in transparent conducting electrodes that have shaped subsequent advances in the field. Before joining Korea University, he held prestigious research and faculty positions that further strengthened his international reputation. At Korea University, Dr. Park leads pioneering work in integrative energy engineering, with research spanning hybrid nanostructures, scalable perovskite solar cells, electro/photo-catalysis, graphene-based devices, and triboelectric nanogenerators, producing notable innovations in solar cell production and energy harvesting materials. He has authored 116 Publications, accumulated 5,452 citations, and holds an impressive h-index of 36, reflecting the global impact of his scholarship. His highly cited works on graphene electrodes and hybrid solar cells have been published in top-tier journals such as Nature Nanotechnology, ACS Nano, and Advanced Energy Materials. Widely acclaimed for his leadership, impactful publications, and international collaborations, Dr. Hyesung Park is celebrated not only for advancing materials science and energy technologies but also for inspiring future scientists and engineers through his mentorship and academic contributions. Honored with national and international recognition, he exemplifies excellence in research, education, and innovation, and his pioneering contributions continue to drive breakthroughs in sustainable energy technologies that are shaping a cleaner and more efficient future.

Profile: Scopus | Google Scholar | ORCID

Featured Publications

Kim, K. K., Reina, A., Shi, Y., Park, H., Li, L. J., Lee, Y. H., & Kong, J. (2010). Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 21(28), 285205.

Park, H., Brown, P. R., Bulović, V., & Kong, J. (2012). Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Letters, 12(1), 133–140.

Park, H., Rowehl, J. A., Kim, K. K., Bulović, V., & Kong, J. (2010). Doped graphene electrodes for organic solar cells. Nanotechnology, 21(50), 505204.

Park, H., Chang, S., Zhou, X., Kong, J., Palacios, T., & Gradečak, S. (2014). Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Letters, 14(9), 5148–5154.

Park, H., Chang, S., Jean, J., Cheng, J. J., Araujo, P. T., Wang, M., Bawendi, M. G., & Kong, J. (2013). Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Letters, 13(1), 233–239.

Koo, D., Jung, S., Seo, J., Jeong, G., Choi, Y., Lee, J., Lee, S. M., Cho, Y., Jeong, M., & Park, H. (2020). Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes. Joule, 4(5), 1021–1034.

Oh, N. K., Seo, J., Lee, S., Kim, H. J., Kim, U., Lee, J., Han, Y. K., & Park, H. (2021). Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nature Communications, 12(1), 4606.

Oh, N. K., Kim, C., Lee, J., Kwon, O., Choi, Y., Jung, G. Y., Lim, H. Y., Kwak, S. K., Kim, G., & Park, H. (2019). In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours. Nature Communications, 10(1), 1723.

Dan Qiao | Chemistry and Materials Science | Best Researcher Award

Prof. Dan Qiao | Chemistry and Materials Science | Best Researcher Award

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences | China

Prof. Dan Qiao is an accomplished scientist whose research has significantly advanced the field of tribo chemistry and lubrication engineering. He is widely recognized for his groundbreaking work in liquid super lubrication, nano-additives, and specialized lubricating oils that have transformed both academic understanding and industrial applications. His career reflects an impressive balance of research, innovation, leadership, and mentorship. As a doctoral supervisor and senior researcher at the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Prof. Dan Qiao has made remarkable contributions to the study of interfacial reactions, tribological mechanisms, and the design of next-generation lubricants. His efforts continue to strengthen the bridge between fundamental science and applied technologies in aerospace, energy, and advanced manufacturing.

Professional Profile

Scopus

Education

Prof. Dan Qiao completed his higher studies in materials science at the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. During this period, he built a strong foundation in the fields of materials design, friction chemistry, and lubrication engineering. His academic training not only sharpened his expertise in materials research but also inspired his passion for solving industrial challenges through scientific innovation. This educational background allowed him to specialize in tribology and lubrication, disciplines that would later define his professional identity and establish him as a global authority in his field.

Experience

Prof. Dan Qiao began his career at the Lanzhou Institute of Chemical Physics, where he has steadily risen through multiple research and leadership positions. His journey from an early-stage researcher to a full professor and doctoral supervisor reflects both his dedication and his outstanding contributions to the advancement of tribological science. Over the years, he has successfully led more than ten significant scientific projects supported by national and provincial funding agencies. His expertise has also driven the development of specialized lubricants and tribological technologies that have been applied to aerospace and other high-tech industries. Beyond research, he has actively engaged in academic societies, contributed to scientific conferences, and provided mentorship to young scientists, thereby strengthening the research community both nationally and internationally.

Research Interest

Prof. Dan Qiao’s research interests lie at the intersection of materials science, tribology, and chemical engineering. His work focuses on tribo chemistry, liquid super lubrication, frictional catalysis, and the development of advanced lubricants incorporating nano-additives. He is particularly interested in the molecular-level mechanisms that govern interfacial interactions, tribofilm formation, and the dynamic behavior of lubricants under extreme conditions. By combining theory, experimental methods, and practical engineering applications, Prof. Dan Qiao’s research aims to create lubricating materials with superior efficiency, biodegradability, and adaptability. His studies contribute not only to the development of environmentally friendly lubricants but also to the long-term reliability of machines and equipment in demanding industries such as aerospace, energy, and precision manufacturing.

Awards

Prof. Dan Qiao has received numerous recognitions that highlight his outstanding contributions to science and technology. He has been honored as a Young Scientist of the Chinese Academy of Sciences and was selected among the most promising talents of his generation in Gansu Province. His achievements have also earned him membership in the prestigious Youth Innovation Promotion Association of the Chinese Academy of Sciences, along with inclusion among the Longyan Young Talents. In addition, he has been recognized as an Excellent Graduate Tutor, reflecting his dual role as both a leading researcher and an inspiring academic mentor. These awards underscore his reputation as a scientist who combines creativity with dedication, ensuring both scientific progress and the training of future leaders in materials research.

Publications

Prof. Dan Qiao has authored more than fifty peer-reviewed papers in leading international journals, with many of his works being widely cited by other researchers in the fields of tribology, chemistry, and materials engineering. His publications demonstrate both academic depth and practical significance. Some selected works include:

Tittle: Preparation and tribological performance of core-shell structured rare-earth nanocomposites as lubricating additives
Journal: Scientia Sinica Technologica
Published on: 2025

Tittle: Robust Macroscale Superlubricity Enabled by the Protic Ionic Liquid Polyol Aqueous Solution: From Interface Adsorption to Tribofilm Formation
Journal: ACS Applied Materials and Interfaces
Published on: 2025

Tittle: Elucidating the Friction Catalytic Lubrication Mechanism of Ag Nanoparticles Loaded on MOFs
Journal: Advanced Materials Interfaces
Published on: 2025

Tittle: Perspective of Tribological Mechanisms for α-Alkene Molecules with Different Chain Lengths from Interface Behavior
Journal: Langmuir
Published on: 2024

Tittle: Study on the tribological properties of hexagonal boron nitride flakes composite hydrophilic/hydrophobic ionic liquids films by self-assembly
Journal: Applied Surface Science
Published on: 2024

Conclusion

Prof. Dan Qiao’s scientific journey represents the perfect blend of intellectual curiosity, innovative research, and real-world application. His pioneering contributions in tribology and lubrication science have expanded the frontiers of knowledge while delivering tangible solutions to industries that demand high-performance materials. With extensive publications, numerous patents, and impactful projects, his research continues to inspire advancements in surface engineering and energy-efficient lubrication technologies. Beyond his personal achievements, Prof. Dan Qiao is a mentor, leader, and collaborator who actively contributes to the global scientific community. His accomplishments make him a highly deserving nominee for the Best Researcher Award.

Hai-Hong Wu | Materials Engineering | Best Researcher Award

Prof. Hai-Hong Wu | Materials Engineering | Best Researcher Award

Henan University of Technology | China

Prof. Hai-Hong Wu is a distinguished researcher at the School of Mechanical and Electrical Engineering, Henan University of Technology, China. With a specialization in advanced composite materials, Dr. Wu has made significant strides in developing ultra-light and ultra-thin carbon fiber composites. Her work integrates smart structures and multifunctional energy storage capabilities, contributing profoundly to material science and engineering. She is known for transforming innovative research into practical applications and holds an impressive record of patents and publications.

Professional profile👤

Scopus

Strengths for the Awards✨

Professor Hai-Hong Wu, affiliated with the School of Mechanical and Electrical Engineering at Henan University of Technology, demonstrates outstanding research capabilities in advanced composite materials. His work on ultra-light and ultra-thin carbon fiber composites, as well as intelligent structures and energy storage systems, contributes significantly to both academic advancements and practical engineering applications.

His involvement in the National Natural Science Foundation of China project and innovations such as the Integrated Preparation Technology for Large-Tow Carbon Fiber (Patent No.: 201711101073X) highlights his pioneering role in composite processing and sustainable energy systems. Publications in high-impact journals like Composite Structures and Polymer Composites and a proven track record of research projects reinforce his credentials as a leading researcher.

🎓 Education

Dr. Hai-Hong Wu pursued her advanced studies in mechanical and materials engineering, equipping her with deep theoretical knowledge and practical skills in composite material development. Her academic training laid the foundation for her expertise in polymer composites and intelligent structural materials.

🧪 Experience

With extensive experience in research and academia, Dr. Wu has led multiple national and institutional research initiatives. She has been actively involved in both theoretical research and its technological applications, including consultancy with industry partners and collaborations with academic peers. She has supervised several projects, mentored young scholars, and played a pivotal role in innovation-driven development at her institution.

🔬 Research Interests On Materials Engineering

Dr. Wu’s core research interests encompass the preparation and molding processes of ultra-light and ultra-thin carbon fiber composites, intelligent composite structures, and energy-storing structural materials. Her work aligns with the emerging needs of aerospace, defense, and smart manufacturing sectors, pushing the boundaries of lightweight, multifunctional materials.

🏅 Awards

Dr. Hai-Hong Wu’s innovations have been recognized at the national level. She has received funding from the National Natural Science Foundation of China (Grant No. U1604253) and has contributed to transformative projects like “Operation Wise Eyes” Innovation Achievement Transformation and Application Project (62602010237). Her excellence in innovation and applied research continues to garner accolades.

📚 Publications

Dr. Wu has authored impactful articles in renowned journals such as Composite Structures and Polymer Composites. Her most cited work includes:

  • Wu, H., et al. “Preparation of ultra-thin carbon fiber composites for energy storage applications.” Composite Structures, 2019, cited by 120 articles.

  • Wu, H., et al. “Smart structural behavior of polymer composites with energy absorption characteristics.” Polymer Composites, 2021, cited by 85 articles.

These publications emphasize the dual-functionality of strength and storage in fiber composites, adding valuable insights to materials science.

🧾 Patents

Dr. Wu is the co-inventor of the patent titled “Integrated Preparation Technology for Broadening and Curing of Large-Tow Carbon Fiber”, Patent No.: 201711101073X. This invention is a testament to her applied research in scalable production techniques for carbon fiber materials.

✅ Conclusion

🌟 Dr. Hai-Hong Wu stands out as a pioneering scientist whose research bridges the gap between theoretical innovation and practical application. Her dedication to advancing composite material technologies has led to significant contributions in academic literature, patent development, and real-world implementation. With her commitment to scientific excellence and cross-sector impact, she is a strong candidate for the Best Researcher Award.

Chuan-Pei Lee | Materials | Best Researcher Award

Assoc. Prof. Dr. Chuan-Pei Lee | Materials | Best Researcher Award

Associate Professor | Department of Applied Physics and Chemistry, University of Taipei | Taiwan

Dr. Chuan-Pei Lee is an esteemed Associate Professor in the Department of Applied Physics and Chemistry at the University of Taipei, Taiwan. With a strong background in chemical engineering and a passion for nanomaterials and renewable energy, he has significantly contributed to the fields of nanotechnology, solar fuels, water splitting, and supercapacitors. His extensive research in electrochemical techniques has established him as a leading figure in energy-related applications. To date, Dr. Lee has authored 13 book chapters and 117 SCI papers, garnering over 5,470 citations and an H-index of 44.

Profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Outstanding Research Output 📚

    • Published 117 SCI papers, reflecting a strong research presence.
    • Contributed 13 book chapters, further demonstrating academic influence.
  • High Impact and Citation Metrics 📈

    • Google Scholar Citations: 5470
    • H-index: 44, showing significant contributions to the field.
    • Publications in prestigious journals like ACS Applied Materials & Interfaces, Nano Energy, J. Mater. Chem. A, and Materials Today Energy.
  • Diverse and Impactful Research Areas 🌍

    • Expertise in nanomaterials, solar energy, water splitting, and supercapacitors.
    • Work contributes to renewable energy solutions and sustainability.
    • Strong command over electrochemical techniques, crucial for energy storage research.
  • Collaboration and International Recognition 🤝

    • Co-authored papers with international research teams.
    • Worked with notable researchers from National Taiwan University, University of California, and RSC-affiliated institutions.

🎓 Education

  • Ph.D. in Chemical Engineering – National Taiwan University (2012)

💼 Experience

  • Associate Professor – Department of Applied Physics and Chemistry, University of Taipei, Taiwan (Present)
  • Research Collaborator – Various international research institutions focusing on nanomaterials and energy storage technologies.

🔬 Research Interests On Materials

Dr. Lee’s research revolves around the development of advanced materials for energy applications. His key areas of interest include:

  • Nanomaterials/Nanostructures – Synthesis and applications in energy storage and conversion.
  • Solar Energy & Solar Fuels – Enhancing the efficiency of solar energy harvesting and utilization.
  • Water Splitting Technology – Exploring innovative electrocatalysts for hydrogen production.
  • Supercapacitors – Designing high-performance electrodes for energy storage solutions.
  • Electrochemical Techniques – Studying charge transfer mechanisms and optimizing material properties for enhanced efficiency.

🏆 Awards & Recognitions

  • Recognized as a leading researcher in energy materials with a high citation index (H-index: 44).
  • Numerous awards for excellence in research and innovation in applied physics and chemistry.
  • Invited keynote speaker at multiple international conferences on nanotechnology and renewable energy.

📚 Selected Publications

Dr. Lee has published extensively in top-tier journals. Below are some of his notable works:

  1. Use of organic materials in dye-sensitized solar cells

    • Authors: CP Lee, CT Li, KC Ho
    • Year: 2017
    • Citations: 336
  2. Recent progress in organic sensitizers for dye-sensitized solar cells

    • Authors: CP Lee, RYY Lin, LY Lin, CT Li, TC Chu, SS Sun, JT Lin, KC Ho
    • Year: 2015
    • Citations: 273
  3. Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties

    • Authors: A Venkateswararao, KRJ Thomas, CP Lee, CT Li, KC Ho
    • Year: 2014
    • Citations: 202
  4. A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells

    • Authors: CP Lee, KY Lai, CA Lin, CT Li, KC Ho, CI Wu, SP Lau, JH He
    • Year: 2017
    • Citations: 159
  5. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte

    • Authors: MH Yeh, CP Lee, CY Chou, LY Lin, HY Wei, CW Chu, R Vittal, KC Ho
    • Year: 2011
    • Citations: 142
  6. Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black

    • Authors: CP Lee, PY Chen, R Vittal, KC Ho
    • Year: 2010
    • Citations: 136
  7. Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells

    • Authors: JY Li, CY Chen, CP Lee, SC Chen, TH Lin, HH Tsai, KC Ho, CG Wu
    • Year: 2010
    • Citations: 109
  8. 2,7-Diaminofluorene-based organic dyes for dye-sensitized solar cells: effect of auxiliary donor on optical and electrochemical properties

    • Authors: A Baheti, P Singh, CP Lee, KRJ Thomas, KC Ho
    • Year: 2011
    • Citations: 107
  9. Beaded stream-like CoSe₂ nanoneedle array for efficient hydrogen evolution electrocatalysis

    • Authors: CP Lee, WF Chen, T Billo, YG Lin, FY Fu, S Samireddi, CH Lee, …
    • Year: 2016
    • Citations: 97
  10. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells

  • Authors: A Baheti, KR Justin Thomas, CT Li, CP Lee, KC Ho
  • Year: 2015
  • Citations: 95

 

🔍 Conclusion

Dr. Chuan-Pei Lee is a distinguished researcher and academic in the field of applied physics and chemistry, with a deep expertise in nanomaterials, solar energy, and electrochemical energy storage. His groundbreaking research has significantly advanced energy-efficient technologies, leading to innovations in supercapacitors, solar cells, and water splitting techniques. His extensive publication record, high citation impact, and contributions to the scientific community underscore his status as a leading expert in his field. As an influential scientist, Dr. Lee continues to inspire and contribute to the advancement of sustainable energy solutions.