Sandeep Kumar Singh | Chemistry and Materials Science | Best Researcher Award

Mr. Sandeep Kumar Singh | Chemistry and Materials Science | Best Researcher Award

National Institute of Technology Nagaland | India

Mr. Sandeep Kumar Singh is an emerging researcher in the field of Mechanical Engineering with specialized expertise in nanomaterials synthesis, polymer matrix composites, and hybrid fiber-reinforced polymer (FRP) materials. His research primarily focuses on developing advanced multifunctional composites through the surface functionalization of nanofillers such as graphene oxide, titanium dioxide (TiO₂), and silicon carbide to enhance mechanical, thermal, and tribological performance. He has published several high-impact articles in SCI-indexed journals including Polymer Composites, High Performance Polymers, Journal of Adhesion Science and Technology, and Advanced Engineering Materials, reflecting his significant contributions to materials design and nanocomposite technology. His investigations have led to new insights into fracture resistance, wear properties, and interface optimization in hybrid GFRP laminates and epoxy nanocomposites. In addition to journal publications, he has authored book chapters with international publishers like Springer, addressing advancements in sustainable nanocomposites and two-dimensional carbon-based materials. He has presented his research at prominent international conferences in the UK, Türkiye, and India, earning academic recognition for innovation and excellence. As a reviewer for reputed journals under Wiley, Springer Nature, and Taylor & Francis, he actively contributes to scholarly quality and peer evaluation in material science. His ongoing research endeavors aim to bridge the gap between nanotechnology and industrial applications, particularly in the fabrication of high-strength, lightweight composites for aerospace, automotive, and structural sectors. According to Google Scholar, his research has received 35 citations, with an h-index of 3 and an i10-index of 1, underscoring his growing impact and recognition within the global materials research community.

Profiles: Google Scholar | ORCID

Featured Publications

  • Singh, S. K., Nayak, B., Singh, T. J., & Halder, S. (2023). Investigating the role of synthesized reduced graphene oxide and graphite micro-fillers on mechanical and fretting wear performance of glass fiber epoxy-based composite. High Performance Polymers, 35(9), 946–962. https://doi.org/10.1177/095400832311XXXX

  • Singh, S. K., Singh, T. J., Nayak, B., Sonker, P. K., & Singh, M. A. (2024). Analysis of the impact of exfoliated graphene oxide on the mechanical performance and in-plane fracture resistance of epoxy-based nanocomposite. High Performance Polymers, 36(9–10), 487–507. https://doi.org/10.1177/095400832412XXXX

  • Singh, S. K., Singh, T. J., Halder, S., & Khan, N. I. (2025). Investigation of mechanical and thermo-mechanical properties of dopamine-functionalized TiO₂/epoxy nanocomposites. Polymer Composites. https://doi.org/10.1002/pc.XXXX

  • Verma, Y. K., Singh, A. K., Singh, S. K., Dutta, S., & Paswan, M. K. (2025). Comprehensive analysis of enhanced thermal and mechanical properties in vacuum pressure impregnated (VPI) treated Chimono bamboo fibers through surface treatment with sodium hydroxide. Journal of Wood Chemistry and Technology, 45(1), 43–62. https://doi.org/10.1080/02773813.2025.XXXX

  • Singh, S. K., Singh, T. J., Singh, L. D., Sonker, P. K., & Mazumder, B. (2024). Experimental study on the impact of hybrid GFRP composites with graphene oxide and silicon carbide fillers on mechanical and wear properties. Journal of Adhesion Science and Technology. https://doi.org/10.1080/01694243.2024.XXXX

Hyesung Park | Chemistry and Materials Science | Best Researcher Award

Prof. Dr. Hyesung Park | Chemistry and Materials Science | Best Researcher Award

Korea University | South Korea

Dr. Hyesung Park, a distinguished Professor at Korea University, is an internationally recognized authority in hetero-dimensional materials synthesis and their applications in functional devices, including energy harvesting, nanoelectronics, and nanophotonics. His academic journey spans world-leading institutions such as MIT, Northwestern University, and UNIST, where he has consistently advanced renewable energy technologies and next-generation device engineering. He earned his Ph.D. in Electrical Engineering and Computer Science from MIT with groundbreaking research on CVD graphene for organic photovoltaics, pioneering innovations in transparent conducting electrodes that have shaped subsequent advances in the field. Before joining Korea University, he held prestigious research and faculty positions that further strengthened his international reputation. At Korea University, Dr. Park leads pioneering work in integrative energy engineering, with research spanning hybrid nanostructures, scalable perovskite solar cells, electro/photo-catalysis, graphene-based devices, and triboelectric nanogenerators, producing notable innovations in solar cell production and energy harvesting materials. He has authored 116 Publications, accumulated 5,452 citations, and holds an impressive h-index of 36, reflecting the global impact of his scholarship. His highly cited works on graphene electrodes and hybrid solar cells have been published in top-tier journals such as Nature Nanotechnology, ACS Nano, and Advanced Energy Materials. Widely acclaimed for his leadership, impactful publications, and international collaborations, Dr. Hyesung Park is celebrated not only for advancing materials science and energy technologies but also for inspiring future scientists and engineers through his mentorship and academic contributions. Honored with national and international recognition, he exemplifies excellence in research, education, and innovation, and his pioneering contributions continue to drive breakthroughs in sustainable energy technologies that are shaping a cleaner and more efficient future.

Profile: Scopus | Google Scholar | ORCID

Featured Publications

Kim, K. K., Reina, A., Shi, Y., Park, H., Li, L. J., Lee, Y. H., & Kong, J. (2010). Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 21(28), 285205.

Park, H., Brown, P. R., Bulović, V., & Kong, J. (2012). Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Letters, 12(1), 133–140.

Park, H., Rowehl, J. A., Kim, K. K., Bulović, V., & Kong, J. (2010). Doped graphene electrodes for organic solar cells. Nanotechnology, 21(50), 505204.

Park, H., Chang, S., Zhou, X., Kong, J., Palacios, T., & Gradečak, S. (2014). Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Letters, 14(9), 5148–5154.

Park, H., Chang, S., Jean, J., Cheng, J. J., Araujo, P. T., Wang, M., Bawendi, M. G., & Kong, J. (2013). Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Letters, 13(1), 233–239.

Koo, D., Jung, S., Seo, J., Jeong, G., Choi, Y., Lee, J., Lee, S. M., Cho, Y., Jeong, M., & Park, H. (2020). Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes. Joule, 4(5), 1021–1034.

Oh, N. K., Seo, J., Lee, S., Kim, H. J., Kim, U., Lee, J., Han, Y. K., & Park, H. (2021). Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nature Communications, 12(1), 4606.

Oh, N. K., Kim, C., Lee, J., Kwon, O., Choi, Y., Jung, G. Y., Lim, H. Y., Kwak, S. K., Kim, G., & Park, H. (2019). In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours. Nature Communications, 10(1), 1723.

Dan Qiao | Chemistry and Materials Science | Best Researcher Award

Prof. Dan Qiao | Chemistry and Materials Science | Best Researcher Award

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences | China

Prof. Dan Qiao is an accomplished scientist whose research has significantly advanced the field of tribo chemistry and lubrication engineering. He is widely recognized for his groundbreaking work in liquid super lubrication, nano-additives, and specialized lubricating oils that have transformed both academic understanding and industrial applications. His career reflects an impressive balance of research, innovation, leadership, and mentorship. As a doctoral supervisor and senior researcher at the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Prof. Dan Qiao has made remarkable contributions to the study of interfacial reactions, tribological mechanisms, and the design of next-generation lubricants. His efforts continue to strengthen the bridge between fundamental science and applied technologies in aerospace, energy, and advanced manufacturing.

Professional Profile

Scopus

Education

Prof. Dan Qiao completed his higher studies in materials science at the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. During this period, he built a strong foundation in the fields of materials design, friction chemistry, and lubrication engineering. His academic training not only sharpened his expertise in materials research but also inspired his passion for solving industrial challenges through scientific innovation. This educational background allowed him to specialize in tribology and lubrication, disciplines that would later define his professional identity and establish him as a global authority in his field.

Experience

Prof. Dan Qiao began his career at the Lanzhou Institute of Chemical Physics, where he has steadily risen through multiple research and leadership positions. His journey from an early-stage researcher to a full professor and doctoral supervisor reflects both his dedication and his outstanding contributions to the advancement of tribological science. Over the years, he has successfully led more than ten significant scientific projects supported by national and provincial funding agencies. His expertise has also driven the development of specialized lubricants and tribological technologies that have been applied to aerospace and other high-tech industries. Beyond research, he has actively engaged in academic societies, contributed to scientific conferences, and provided mentorship to young scientists, thereby strengthening the research community both nationally and internationally.

Research Interest

Prof. Dan Qiao’s research interests lie at the intersection of materials science, tribology, and chemical engineering. His work focuses on tribo chemistry, liquid super lubrication, frictional catalysis, and the development of advanced lubricants incorporating nano-additives. He is particularly interested in the molecular-level mechanisms that govern interfacial interactions, tribofilm formation, and the dynamic behavior of lubricants under extreme conditions. By combining theory, experimental methods, and practical engineering applications, Prof. Dan Qiao’s research aims to create lubricating materials with superior efficiency, biodegradability, and adaptability. His studies contribute not only to the development of environmentally friendly lubricants but also to the long-term reliability of machines and equipment in demanding industries such as aerospace, energy, and precision manufacturing.

Awards

Prof. Dan Qiao has received numerous recognitions that highlight his outstanding contributions to science and technology. He has been honored as a Young Scientist of the Chinese Academy of Sciences and was selected among the most promising talents of his generation in Gansu Province. His achievements have also earned him membership in the prestigious Youth Innovation Promotion Association of the Chinese Academy of Sciences, along with inclusion among the Longyan Young Talents. In addition, he has been recognized as an Excellent Graduate Tutor, reflecting his dual role as both a leading researcher and an inspiring academic mentor. These awards underscore his reputation as a scientist who combines creativity with dedication, ensuring both scientific progress and the training of future leaders in materials research.

Publications

Prof. Dan Qiao has authored more than fifty peer-reviewed papers in leading international journals, with many of his works being widely cited by other researchers in the fields of tribology, chemistry, and materials engineering. His publications demonstrate both academic depth and practical significance. Some selected works include:

Tittle: Preparation and tribological performance of core-shell structured rare-earth nanocomposites as lubricating additives
Journal: Scientia Sinica Technologica
Published on: 2025

Tittle: Robust Macroscale Superlubricity Enabled by the Protic Ionic Liquid Polyol Aqueous Solution: From Interface Adsorption to Tribofilm Formation
Journal: ACS Applied Materials and Interfaces
Published on: 2025

Tittle: Elucidating the Friction Catalytic Lubrication Mechanism of Ag Nanoparticles Loaded on MOFs
Journal: Advanced Materials Interfaces
Published on: 2025

Tittle: Perspective of Tribological Mechanisms for α-Alkene Molecules with Different Chain Lengths from Interface Behavior
Journal: Langmuir
Published on: 2024

Tittle: Study on the tribological properties of hexagonal boron nitride flakes composite hydrophilic/hydrophobic ionic liquids films by self-assembly
Journal: Applied Surface Science
Published on: 2024

Conclusion

Prof. Dan Qiao’s scientific journey represents the perfect blend of intellectual curiosity, innovative research, and real-world application. His pioneering contributions in tribology and lubrication science have expanded the frontiers of knowledge while delivering tangible solutions to industries that demand high-performance materials. With extensive publications, numerous patents, and impactful projects, his research continues to inspire advancements in surface engineering and energy-efficient lubrication technologies. Beyond his personal achievements, Prof. Dan Qiao is a mentor, leader, and collaborator who actively contributes to the global scientific community. His accomplishments make him a highly deserving nominee for the Best Researcher Award.

Abdelkader SLIMANE | Materials | Best Researcher Award

Assoc. Prof. Dr. Abdelkader SLIMANE | Materials | Best Researcher Award

University of Science and Technology of Oran Mohamed Boudiaf | Algeria

Dr. Abdelkader Slimane is a distinguished Algerian academic and Associate Professor in Mechanical Engineering, currently serving at the University of Oran. With a profound specialization in structural damage and reliability, he has significantly contributed to both academia and industry. His career spans roles in education, aerospace research, metrology, and advanced mechanical simulations, making him a dynamic figure in engineering science.

Author Profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

Dr. Abdelkader Slimane demonstrates exceptional qualifications and achievements that make him a strong contender for the Best Researcher Award. With a Ph.D. in Mechanical Engineering, specialized in damage and reliability of structures, his work bridges fundamental research and practical application, especially in aerospace and structural integrity.

His research experience spans satellite vibration testing at INTESPACE (AIRBUS), fatigue analysis, fracture mechanics, and advanced material simulations. Notably, he has published 22 peer-reviewed journal articles in top-tier mechanical and structural engineering journals such as:

He also serves as editor and reviewer for international journals, contributing to the global research community. Dr. Slimane’s involvement in conference presentations (over 17) and his interdisciplinary collaborations in satellite design and industrial safety highlight his applied research impact.

🎓 Education

Dr. Slimane’s academic journey is marked by excellence. He earned his Ph.D. in Mechanical Engineering (2015–2016) with a focus on the damage and reliability of structures, achieving the distinction of Very Honorable. Prior to that, he completed his Magister in Mechanical Engineering in 2012 as Valedictorian, and his State Engineering degree in 2010 with top honors. He also pursued various trainings, notably with AIRBUS-Toulouse (France) on acoustic vibration and satellite testing, enriching his global engineering perspective.

👨‍🔬 Experience

Dr. Slimane has amassed rich professional experience across teaching, research, and industrial domains. Since 2017, he has served as an Associate Professor at the University of Oran. His previous roles include Lecturer at Sidi Bel Abbès University and Researcher at the Satellites Development Center (CDS), contributing notably to vibration testing for space applications. Additionally, he held positions such as Maintenance Engineer (EPTP) and Central Inspector in Legal Metrology (ONML). His career reflects a deep commitment to applied engineering solutions.

🔬 Research Interests On Materials

His research interests encompass structural integrity, damage mechanics, fatigue analysis, satellite vibration testing, and advanced simulation methods such as the Gurson–Tvergaard–Needleman model. Dr. Slimane’s contributions bridge theoretical modeling and real-world engineering challenges, particularly in welded structures, carbon steel failure, and space materials. He is also an editor and reviewer for multiple international journals.

🏆 Awards & Recognition

Throughout his academic career, Dr. Slimane has received multiple accolades and honors, including Valedictorian distinctions in both his undergraduate and postgraduate studies. He has led key international collaborations and received certifications from globally reputed aerospace institutions like AIRBUS-INTESPACE. His editorial responsibilities and research contributions have elevated his reputation within the global mechanical engineering community.

📚 Publications

  • Parametric study of the ductile damage by the Gurson–Tvergaard–Needleman model of structures in carbon steel A48-AP
    Authors: A. Slimane, B. Bouchouicha, M. Benguediab, S.A. Slimane
    Year: 2015
    Citations: 60

  • Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding
    Authors: S.A. Slimane, A. Slimane, A. Guelailia, A. Boudjemai, S. Kebdani, A. Smahat, et al.
    Year: 2022
    Citations: 52

  • Effect of position of tension-loaded inserts on honeycomb panels used for space applications
    Authors: S. Slimane, S. Kebdani, A. Boudjemai, A. Slimane
    Year: 2018
    Citations: 32

  • Contribution to the study of fatigue and rupture of welded structures in carbon steel-a48 ap: experimental and numerical study
    Authors: A. Slimane, B. Bouchouicha, M. Benguediab, S.A. Slimane
    Year: 2015
    Citations: 25

  • Parameters effects analysis of rotary ultrasonic machining on carbon fiber reinforced plastic (CFRP) composite using an interactive RSM Method
    Authors: A. Slimane, S. Slimane, S. Kebdani, M. Chaib, S. Dahmane, B. Bouchouicha, et al.
    Year: 2019
    Citations: 24

  • An interactive method for predicting industrial equipment defects
    Authors: A. Slimane, S. Kebdani, B. Bouchouicha, M. Benguediab, S. Slimane, et al.
    Year: 2018
    Citations: 19

  • Optimization of ultimate tensile strength with DOE approach for application FSW process in the aluminum alloys AA6061-T651 & AA7075-T651
    Authors: M. Chaib, A. Slimane, S.A. Slimane, A. Ziadi, B. Bouchouicha
    Year: 2021
    Citations: 18

  • Determination of the optimal path of three axes robot using genetic algorithm
    Authors: S.A. Dahmane, A. Megueni, A. Azzedine, A. Slimane, A. Lousdad
    Year: 2019
    Citations: 17

  • Modeling and optimization of a cracked pipeline under pressure by an interactive method: design of experiments
    Authors: B. Kaddour, B. Bouchouicha, M. Benguediab, A. Slimane
    Year: 2018
    Citations: 17

  • Analysis and compensation of positioning errors of robotic systems by an interactive method
    Authors: S.A. Dahmane, A. Slimane, M. Chaib, M. Kadem, L. Nehari, S.A. Slimane, et al.
    Year: 2023
    Citations: 14

✅ Conclusion

Dr. Abdelkader Slimane exemplifies academic excellence and applied innovation in mechanical engineering. His impactful research, global collaborations, and dedication to student development position him as a leading candidate for the Best Researcher Award. From pioneering fatigue simulations to advancing aerospace structures, Dr. Slimane’s contributions continue to drive progress in engineering science. His work not only strengthens industrial reliability but also propels the future of space applications.

Xiao-Wu Lei | Materials | Best Researcher Award

Prof. Xiao-Wu Lei | Materials | Best Researcher Award

Jining University | China

Dr. Xiao-Wu Lei is a distinguished Associate Professor in the Department of Chemistry and Chemical Engineering at Jining University, China. Born on January 8, 1984, in PingYao, Shanxi Province, Dr. Lei has built a strong academic and research foundation in the field of inorganic functional materials. With a vibrant passion for cutting-edge research and an impressive portfolio of high-impact publications, he is recognized as a leading scientist in the synthesis and application of novel hybrid materials, intermetallic compounds, and photoluminescent systems.

Professional profile👤

Scopus

Strengths for the Awards✨

  • Exceptional Publication Record
    Dr. Xiao-Wu Lei has published extensively in high-impact journals such as Angewandte Chemie International Edition, Advanced Science, Chemical Science, ACS Applied Materials & Interfaces, Advanced Optical Materials, and Chemical Engineering Journal. His research spans over 20 high-profile papers within the last 5 years, signifying a high level of sustained productivity and relevance.

  • Research Focus on Cutting-edge Materials
    His work focuses on polar intermetallics, metal chalcogenometalates, hybrid metal halides, and metal–organic frameworks. These areas are central to advances in photocatalysis, scintillation, solar energy, and optoelectronic devices, making his research extremely pertinent to current global technological needs.

  • Expertise and Versatility
    Dr. Lei demonstrates mastery over both experimental and computational techniques—ranging from solid-state synthesis and solvothermal methods to X-ray crystallography and electronic structure calculations. His skillset includes the use of complex software like WIEN2K, CASTEP, and SHELXTL.

  • Strong International Impact
    He has multiple collaborative publications with global visibility, often co-authoring with internationally recognized scholars. His recent works in fluorescence sensing, X-ray scintillators, and lead-free perovskites are aligned with green and sustainable material development, highlighting both scientific depth and environmental relevance.

🎓 Education

Dr. Lei received his Bachelor of Science in Chemistry from Jilin University (2000–2004), one of China’s most prestigious institutions. He pursued his Ph.D. in Inorganic Chemistry at the Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (2004–2010), under the guidance of Prof. Jiang-Gao Mao, an editor of Journal of Solid State Chemistry. His academic background provided him with a robust foundation in solid-state synthesis and materials characterization.

👨‍🏫 Experience

Since August 2010, Dr. Lei has served as an Associate Professor at Jining University, where he has contributed extensively to both teaching and research. With over a decade of academic service, he has supervised student research projects and led numerous experimental investigations in functional materials. His technical skills include advanced characterization techniques (XRD, IR, UV-Vis, TGA, SC-XRD), and computational modeling (WIEN2K, CASTEP, etc.), making him a multifaceted researcher.

🔍 Research Interests On Materials

Dr. Lei’s research revolves around inorganic functional materials, with a focus on:

  • Polar intermetallics and Zintl phases for thermoelectric and superconducting applications.

  • Metal chalcogenometalates with properties suited for photocatalysis, magnetism, and optics.

  • Hybrid metal halides for solar cells and X-ray scintillators.

  •  Further interests: microporous materials, metal–organic frameworks (MOFs), and luminescent materials. His work blends theoretical modeling and experimental synthesis, contributing to next-generation optoelectronic technologies.

🏆 Awards & Recognition

Dr. Lei is a strong nominee for the Research Excellence Award for Emerging Scientists at Jining University due to his exceptional contributions in developing advanced luminescent and hybrid materials. His research is regularly published in top-tier international journals, including Angewandte Chemie, Advanced Science, Chemical Science, and ACS Applied Materials & Interfaces, demonstrating both innovation and international relevance. 🏅📈

📚 Publications

1. Hybrid metal halide family with color-time-dual-resolved phosphorescence for multiplexed information security applications

  • Authors: Liu, Yuhang; Yan, Tianyu; Dong, Menghan; … Kong, Xiangwen; Lei, Xiaowu

  • Year: 2025

  • Citations: 3

2. Zero-dimensional cadmium halide with broad band yellow light emission for white light-emitting diodes

  • Authors: Lin, Na; Hu, Zhao Yang; Zhang, Xinyue; … Jing, Zhihong; Chen, Zhiwei

  • Year: 2025

  • Citations: 0

3. Synthesis and stability of one-dimensional red-emitting manganese-based Organic–inorganic halide

  • Authors: Wang, Danyang; Wang, Shanxiao; Tian, Chaoyang; … Lei, Xiaowu; Yu, Fang

  • Year: 2025

  • Citations: 1

4. In Situ Halide Vacancy Tuning of Low-Dimensional Lead Perovskites to Realize Multiple Adjustable Luminescence Performance

  • Authors: Sun, Chen; Jing, Changqing; Li, Dongyang; … Fei, Honghan; Lei, Xiaowu

  • Year: 2025

  • Citations: 0

5. Synchronously Improved Multiple Afterglow and Phosphorescence Efficiencies in 0D Hybrid Zinc Halides With Ultrahigh Anti-Water Stabilities

  • Authors: Zhao, Jianqiang; Wang, Danyang; Yan, Tianyu; … Yan, Dongpeng; Lei, Xiaowu

  • Year: 2024

  • Citations: 17

6. Zero-dimensional organic-inorganic hybrid zinc halide with stable broadband blue light emissions

  • Authors: Zhang, Jie; Ma, Yu Xin; Wu, Ming; … He, Yuanchun; Lei, Xiaowu

  • Year: 2024

  • Citations: 0

7. Zero-dimensional cuprous halide scintillator with ultra-high anti-water stability for X-ray imaging

  • Authors: Lv, Jingning; Lin, Na; Zhang, Jiayi; … Lei, Xiaowu; Chen, Zhiwei

  • Year: 2024

  • Citations: 1

8. Zero-dimensional organic-inorganic hybrid indium halide perovskite with broadband yellow light emission

  • Authors: Wang, Qi; Jiang, Wei; Xuan, Pengyao; … Yue, Chengyang; Kong, Xiangwen

  • Year: 2024

  • Citations: 0

9. Near-unity broadband emissive hybrid manganese bromides as highly-efficient radiation scintillators

  • Authors: Gong, Zhongliang; Zhang, Jie; Deng, Xiangyuan; … He, Yuanchun; Lei, Xiaowu

  • Year: 2024

  • Citations: 8

10. One-Dimensional Red Light-Emissive Organic Manganese(II) Halides as X-Ray Scintillators

  • Authors: Yu, Fang; Zhang, Huiru; Gao, Wenwen; … Kong, Xiangwen; Yue, Chengyang

  • Year: 2024

  • Citations: 3

✅ Conclusion

Dr. Xiao-Wu Lei exemplifies academic excellence and innovative research. His interdisciplinary work in inorganic chemistry and material sciences, combined with a consistent publication record in top journals, positions him as a valuable contributor to global scientific advancement. With profound expertise in hybrid materials and luminescent technologies, he is an outstanding candidate for the Research Award Nomination by the Department of Chemistry and Chemical Engineering, Jining University.

Panagiotis Regkouzas | Materials | Best Researcher Award

Dr. Panagiotis Regkouzas | Materials | Best Researcher Award

Technical University of Crete | Greece

Dr. Panagiotis Regkouzas is a passionate environmental engineer from Chania, Greece, born on November 21, 1991. With a robust academic and professional foundation, he is currently a postdoctoral researcher at the Technical University of Crete. His career is defined by his dedication to sustainable development, specializing in biochar production, wastewater treatment, and the circular economy. Through national and international collaborations, Panagiotis contributes to innovative environmental engineering solutions that promote resource recovery and sustainable agriculture.

Professional profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Strong Academic Background:

    • PhD in Environmental Engineering with a specialization in biochar production, environmental applications, and wastewater treatment.

    • Dual master’s degrees with focused theses on biochar and wastewater reuse, directly supporting the sustainability and circular economy sectors.

  • Research Productivity & Impact:

    • Author/co-author of several peer-reviewed articles in reputed international journals such as Chemosphere, Environmental Science and Pollution Research, and Biomass Conversion and Biorefinery.

    • Published cutting-edge work on nanobiochar, graphene oxide biochars, and CNT-doped composites, showing innovation and depth in environmental nanotechnology.

  • Active Participation in High-Profile Projects:

    • Involved in European Union-funded projects like Horizon 2020 (PRIMA) and Marie Skłodowska-Curie Actions, indicating his role in top-tier international collaborations.

    • Project themes align with global environmental priorities such as circular economy, green technologies, and nature-based solutions.

  • Extensive Conference Participation & Visibility:

    • Regular presenter at international conferences (EGU, IEES, IWA, EURECA-PRO), reflecting academic leadership and scientific communication strength.

    • Frequent contributions in sessions on circular economy, wastewater valorization, and biochar technologies, underlining topic consistency and relevance.

🎓 Education

Panagiotis began his academic journey with a Master of Engineering (MEng) in Environmental Engineering at the Technical University of Crete (2009–2015), where he explored biochar applications for pollutant adsorption. He then pursued a Master of Science (MSc) in Advanced Water and Wastewater Treatment (2015–2017), focusing on valorizing municipal solid waste. His PhD (2017–2024) further delved into advanced biochar materials and their applications in removing emerging contaminants from water. Currently, he continues his research as a postdoctoral scholar in Circular Economy at the same institution.

🧪 Experience

With over 7 years of research and teaching experience at the Technical University of Crete, Panagiotis has worked on diverse projects ranging from biochar production and nanomaterials to wastewater treatment technologies. His roles include university research and teaching assistant, as well as laboratory assistant in courses on water treatment and environmental engineering. In 2024, he expanded his international experience as an Engineering Research Scientist at APS-Ekoinnowacje in Poland, emphasizing sustainable waste management and environmental innovation.

🔬 Research Interests On Materials

Panagiotis’s research interests lie in environmental sustainability with a sharp focus on circular economy principles. He is particularly interested in:

  • Biochar production from waste biomass

  • Adsorption of emerging micro-contaminants

  • Development of nanocomposite biochars

  • Wastewater and sludge treatment

  • Nature-based solutions like constructed wetlands
    His work bridges the gap between environmental engineering and practical, sustainable applications for agriculture and water systems.

🏆 Awards & Nominations

1. Title: Adsorption of selected organic micro-pollutants on sewage sludge biochar
Authors: P. Regkouzas, E. Diamadopoulos
Year: 2019
Citations: 158

2. Title: Ni (II) adsorption on biochars produced from different types of biomass
Authors: R.N. Mourgela, P. Regkouzas, F.M. Pellera, E. Diamadopoulos
Year: 2020
Citations: 14

3. Title: Biochar production from waste biomass: Characterization and evaluation for agronomic and environmental applications
Authors: F.M. Pellera, P. Regkouzas, I. Manolikaki, E. Diamadopoulos
Year: 2021
Citations: 12

4. Title: Production and characterization of graphene oxide-engineered biochars and application for organic micro-pollutant adsorption from aqueous solutions
Authors: P. Regkouzas, L. Sygellou, E. Diamadopoulos
Year: 2023
Citations: 10

5. Title: Effect of compost and compost-derived biochar on the growth of lettuce irrigated with water and treated wastewater
Authors: P. Regkouzas, N. Katie, K. Bontiotis, A. Stefanakis
Year: 2025
Citations: Not listed

6. Title: Assessing Biochar and Compost from the Organic Fraction of Municipal Solid Waste on Nutrient Availability and Plant Growth of Lettuce in a Pot Experiment
Authors: P. Regkouzas, I. Manolikaki, E. Diamadopoulos
Year: 2025
Citations: Not listed

7. Title: Effect of compost and compost-derived biochar on lettuce growth in a water and wastewater irrigated pot experiment
Authors: P. Regkouzas, N. Katie, K. Bontiotis, A. Stefanakis
Year: 2025
Citations: Not listed

8. Title: The role of biochar in a circular economy: from agriculture to water and wastewater treatment applications
Authors: P. Regkouzas, I. Asimakoulas, E. Athanasiadou, E. Koukouraki, …
Year: 2024
Citations: Not listed

9. Title: Production of advanced adsorptive materials based on biochar
Author: P. Regkouzas
Year: 2024
Citations: Not listed

10. Title: Global Challenges for a Sustainable Society: EURECA-PRO
Authors: P. Regkouzas, E. Diamadopoulos
Year: 2023
Citations: Not listed

✅ Conclusion

Panagiotis Regkouzas exemplifies the spirit of environmental innovation and sustainable engineering. With a solid foundation in education, a breadth of interdisciplinary experience, and a forward-looking research portfolio, he is a valuable asset to the scientific community and an outstanding nominee for this award. His work paves the way for greener technologies in water treatment, agriculture, and waste valorization, making impactful contributions both locally and globally 🌎🌿.