Neetu Yadav | Materials Science | Best Researcher Award

Ms. Neetu Yadav | Materials Science | Best Researcher Award

Department of Physics, University of Lucknow | India

Neetu Yadav is a passionate and dedicated researcher specializing in Material Science, with a keen interest in humidity and gas sensors. Born on April 18, 1996, in India, she currently resides in Pantnagar, Uttarakhand. Her academic journey, combined with a growing list of publications, reflects her commitment to advancing sensor technology through nanomaterials and transition metal oxides. With excellent research, communication, and analytical skills, Neetu brings a multidisciplinary approach to scientific inquiry, bridging physics, chemistry, and materials engineering.

Professional profileđŸ‘€

Scopus

Google Scholar

ORCID

Strengths for the Awards✹

Ms. Neetu Yadav exemplifies the profile of an emerging researcher in the domain of material science and sensor technology. Her ongoing Ph.D. research at the University of Lucknow focuses on transition metal oxides for gas and humidity sensing applications, a field of significant relevance to environmental monitoring and industrial safety. Despite being at an early stage of her career, she has already co-authored 10+ peer-reviewed publications in reputable journals such as Applied Surface Science, International Journal of Hydrogen Energy, and Physica E, with multiple articles indexed in Scopus and cited internationally.

Her collaborative projects and contributions to interdisciplinary studies involving nanostructures, thin films, irradiation effects, and sensor fabrication underscore her technical competence. She has also co-authored book chapters published by Springer and other academic platforms, indicating her global academic reach. Moreover, her participation in national and international conferences, workshops, and symposiums, as well as involvement in outreach activities like essay competitions and inter-university sports, highlights her holistic development.

🎓 Education

Neetu Yadav is presently pursuing her Ph.D. in Material Science from the Department of Physics, University of Lucknow, focusing on the synthesis and characterization of transition metal oxides for sensor applications. She completed her Master’s in Physics (2019) from the same university with a second division. Prior to that, she earned her B.Sc. in Physics, Chemistry, and Mathematics (2017) from Kumaun University, securing a first division. She also completed her Intermediate and High School from Rajeev Gandhi Navodaya Vidhyalaya, both with top ranks.

đŸ§Ș Experience

Neetu has developed hands-on experience through intensive lab work, workshops, and conferences. Her current research explores optical and structural properties of advanced materials, focusing on their applications in gas and humidity sensing. She has actively participated in experimental setups involving thin-film deposition, surface modification via ion irradiation, and nanomaterial synthesis — enriching her technical proficiency and collaborative skills.

🔍 Research Interests On Materials Science

Her research interests center around the synthesis and structural characterization of transition metal oxides, sensor device fabrication, thin films, and ion beam irradiation effects. She aims to enhance sensor performance for environmental monitoring by manipulating nano-scale properties of oxides like MoO₃, WO₃, SnO₂, and CuO. Her interdisciplinary curiosity also extends into nanotechnology’s societal and ethical dimensions. 📊

🏆 Awards & Recognition

Neetu received an Honorable Mention in the All India Essay Writing Event (2016), organized by Shri Ram Chandra Mission & the UN Information Centre. She has also earned accolades in district-level and inter-parliamentary volleyball tournaments. Her involvement in academic events and diverse interests from chess to painting reflect a well-rounded personality.

📚 Publications

Below are selected publications showcasing Neetu Yadav’s contributions to materials science and sensor technology:

  1. Gamma irradiation induced surface modification of V₂O₅ thin films, Applied Surface Science, 2025 — cited by researchers for its relevance to sensor enhancement mechanisms.

  2. Analysis of nanostructured Bi₂O₃-doped MoO₃, Materials Today: Proceedings, 2024 — contributed to optical and humidity sensor evaluation.

  3. Room temperature LPG sensing of Ag-doped CuO:SnO₂, Physica E, 2024 — investigated gas sensing efficiency.

  4. Effects of 100 MeV Ni⁷âș ion irradiation on MoO₃ thin films, Nuclear Instruments and Methods B, Oct 2024.

  5. Enhanced hydrogen gas sensing with Ag-doped WO₃, International Journal of Hydrogen Energy, 2023.

  6. SnO₂@ZnO based chemiresistor for Ammonia sensing, Materials Chemistry and Physics, Dec 2023.

  7. Yttrium-Cerium oxide sensor for H₂ detection, Engineering Proceedings, 2023.

  8. NiO and SnO₂ nanoparticles for humidity sensing, Interactions, 2022.

  9. XRD studies of sol-gel derived SnO₂, Int. Conf. on Materials Processing & Applications, 2023.

  10. 120MeV Ni⁷âș irradiation effects on WO₃, Journal of Alloys and Compounds, 2025.

📘 Book Chapters:

  • Influence of Temperature on Humidity Sensor (2023), in IIP Series Vol. 3.

  • Nanotechnology: Social Acceptance & Privacy (2024), Springer.

  • Role of Nanotechnology in Sensor Fabrication (2023), IIP Series Vol. 3.

🧠 Conclusion

Neetu Yadav stands out as a promising researcher whose work embodies academic rigor, technical innovation, and societal relevance. Her deep focus on material-based sensors and her contributions through high-impact publications and active participation in global scientific discussions make her an outstanding candidate for the “Best Researcher Award” in Forensic Scientist Awards. 🌟 Her fusion of scientific creativity, hands-on experimentation, and cross-disciplinary collaboration demonstrates not only academic excellence but a steadfast commitment to real-world impact.

Chuan-Pei Lee | Materials | Best Researcher Award

Assoc. Prof. Dr. Chuan-Pei Lee | Materials | Best Researcher Award

Associate Professor | Department of Applied Physics and Chemistry, University of Taipei | Taiwan

Dr. Chuan-Pei Lee is an esteemed Associate Professor in the Department of Applied Physics and Chemistry at the University of Taipei, Taiwan. With a strong background in chemical engineering and a passion for nanomaterials and renewable energy, he has significantly contributed to the fields of nanotechnology, solar fuels, water splitting, and supercapacitors. His extensive research in electrochemical techniques has established him as a leading figure in energy-related applications. To date, Dr. Lee has authored 13 book chapters and 117 SCI papers, garnering over 5,470 citations and an H-index of 44.

ProfileđŸ‘€

Google Scholar

ORCID

Scopus

Strengths for the Awards✹

  • Outstanding Research Output 📚

    • Published 117 SCI papers, reflecting a strong research presence.
    • Contributed 13 book chapters, further demonstrating academic influence.
  • High Impact and Citation Metrics 📈

    • Google Scholar Citations: 5470
    • H-index: 44, showing significant contributions to the field.
    • Publications in prestigious journals like ACS Applied Materials & Interfaces, Nano Energy, J. Mater. Chem. A, and Materials Today Energy.
  • Diverse and Impactful Research Areas 🌍

    • Expertise in nanomaterials, solar energy, water splitting, and supercapacitors.
    • Work contributes to renewable energy solutions and sustainability.
    • Strong command over electrochemical techniques, crucial for energy storage research.
  • Collaboration and International Recognition đŸ€

    • Co-authored papers with international research teams.
    • Worked with notable researchers from National Taiwan University, University of California, and RSC-affiliated institutions.

🎓 Education

  • Ph.D. in Chemical Engineering – National Taiwan University (2012)

đŸ’Œ Experience

  • Associate Professor – Department of Applied Physics and Chemistry, University of Taipei, Taiwan (Present)
  • Research Collaborator – Various international research institutions focusing on nanomaterials and energy storage technologies.

🔬 Research Interests On Materials

Dr. Lee’s research revolves around the development of advanced materials for energy applications. His key areas of interest include:

  • Nanomaterials/Nanostructures – Synthesis and applications in energy storage and conversion.
  • Solar Energy & Solar Fuels – Enhancing the efficiency of solar energy harvesting and utilization.
  • Water Splitting Technology – Exploring innovative electrocatalysts for hydrogen production.
  • Supercapacitors – Designing high-performance electrodes for energy storage solutions.
  • Electrochemical Techniques – Studying charge transfer mechanisms and optimizing material properties for enhanced efficiency.

🏆 Awards & Recognitions

  • Recognized as a leading researcher in energy materials with a high citation index (H-index: 44).
  • Numerous awards for excellence in research and innovation in applied physics and chemistry.
  • Invited keynote speaker at multiple international conferences on nanotechnology and renewable energy.

📚 Selected Publications

Dr. Lee has published extensively in top-tier journals. Below are some of his notable works:

  1. Use of organic materials in dye-sensitized solar cells

    • Authors: CP Lee, CT Li, KC Ho
    • Year: 2017
    • Citations: 336
  2. Recent progress in organic sensitizers for dye-sensitized solar cells

    • Authors: CP Lee, RYY Lin, LY Lin, CT Li, TC Chu, SS Sun, JT Lin, KC Ho
    • Year: 2015
    • Citations: 273
  3. Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties

    • Authors: A Venkateswararao, KRJ Thomas, CP Lee, CT Li, KC Ho
    • Year: 2014
    • Citations: 202
  4. A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells

    • Authors: CP Lee, KY Lai, CA Lin, CT Li, KC Ho, CI Wu, SP Lau, JH He
    • Year: 2017
    • Citations: 159
  5. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte

    • Authors: MH Yeh, CP Lee, CY Chou, LY Lin, HY Wei, CW Chu, R Vittal, KC Ho
    • Year: 2011
    • Citations: 142
  6. Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black

    • Authors: CP Lee, PY Chen, R Vittal, KC Ho
    • Year: 2010
    • Citations: 136
  7. Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells

    • Authors: JY Li, CY Chen, CP Lee, SC Chen, TH Lin, HH Tsai, KC Ho, CG Wu
    • Year: 2010
    • Citations: 109
  8. 2,7-Diaminofluorene-based organic dyes for dye-sensitized solar cells: effect of auxiliary donor on optical and electrochemical properties

    • Authors: A Baheti, P Singh, CP Lee, KRJ Thomas, KC Ho
    • Year: 2011
    • Citations: 107
  9. Beaded stream-like CoSe₂ nanoneedle array for efficient hydrogen evolution electrocatalysis

    • Authors: CP Lee, WF Chen, T Billo, YG Lin, FY Fu, S Samireddi, CH Lee, …
    • Year: 2016
    • Citations: 97
  10. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells

  • Authors: A Baheti, KR Justin Thomas, CT Li, CP Lee, KC Ho
  • Year: 2015
  • Citations: 95

 

🔍 Conclusion

Dr. Chuan-Pei Lee is a distinguished researcher and academic in the field of applied physics and chemistry, with a deep expertise in nanomaterials, solar energy, and electrochemical energy storage. His groundbreaking research has significantly advanced energy-efficient technologies, leading to innovations in supercapacitors, solar cells, and water splitting techniques. His extensive publication record, high citation impact, and contributions to the scientific community underscore his status as a leading expert in his field. As an influential scientist, Dr. Lee continues to inspire and contribute to the advancement of sustainable energy solutions.

Yu-Hsiang Lee | Nanotechnology | Best Researcher Award

Prof. Yu-Hsiang Lee | Nanotechnology | Best Researcher Award

Distinguished Professor | Dept. Biomedical Sciences and Engineering/National Central University | Taiwan

Dr. Yu-Hsiang Lee is a distinguished professor in the Department of Biomedical Sciences & Engineering at National Central University (NCU), Taiwan. He is renowned for his research in nanomedicine, hydrogel-based biomaterials, and mechanotransductional biology. He holds a Ph.D. in Chemical Engineering from the University of Southern California and has accumulated significant experience in academic and industry roles. His contributions to the field of biomedical engineering have positioned him as a key figure in advancing therapies for cancer and chronic wound healing.

Profile

Google Scholar

Orcid

Scopus

Strengths for the Awards

  • Expertise and Experience: Dr. Lee holds a distinguished academic and professional career in biomedical engineering and chemical engineering. His position as a Distinguished Professor and leadership roles such as Associate Dean further demonstrate his excellence in academia.
  • Innovative Research: His work on PFC nanopolymersomes and exosomes for cancer therapy is groundbreaking, especially in addressing challenges like hypoxia in cancer treatment. His research in nanomedicine, drug delivery, and biomaterials is highly innovative and practical.
  • Strong Publication Record: With 40 journals published and a significant citation index (879 citations), Dr. Lee’s research has had a meaningful impact on his field. His work is published in high-impact journals, which highlights the quality and relevance of his contributions.
  • Industry and Collaborative Engagement: Dr. Lee’s involvement with various industry partners and hospitals demonstrates the real-world applicability and potential of his research. His collaborations with both academic and industry entities, such as Somapex Inc., YU GREEN CO., and Cathay General Hospital, reflect his commitment to advancing scientific knowledge in tandem with practical applications.
  • Ongoing Research and Innovation: Dr. Lee is engaged in ongoing research that is funded by the National Science and Technology Council in Taiwan, which indicates that his work is both cutting-edge and supported by recognized national research institutions.

Education 🎓

Dr. Lee completed his B.S. in Chemical Engineering at Tunghai University (Taiwan) in 1998, followed by an M.S. and Ph.D. in Chemical Engineering from the University of Southern California (USA) in 2002 and 2006, respectively. His academic background has laid a strong foundation for his pioneering research in biomedical engineering and nanomedicine.

Experience đŸ’Œ

Dr. Lee has a diverse professional background. After earning his Ph.D., he worked as a research scientist at Sierra Sciences LLC (USA) from 2006 to 2008, focusing on drug discovery. He then joined the UCLA Dental Research Institute as a postdoctoral fellow, working on biomarker discovery projects. Since 2010, Dr. Lee has held several academic positions at NCU, including Assistant Professor, Associate Professor, Professor, and most recently, Distinguished Professor in 2022. He has also served as the Associate Dean for NCU’s College of Health Sciences & Technology from 2020 to 2023.

Research Interests On Nanotechnology 🔬

Dr. Lee’s current research interests include:

  1. Nanomedicine for cancer and bacterial infection therapies.
  2. Hydrogel-based biomaterials for chronic wound healing.
  3. Photobioreactor engineering for enhanced microalgae cultivation.
  4. Mechanotransductional biology for vascular and tumor microenvironment studies.
    His interdisciplinary research merges advanced materials science with biomedical engineering to develop innovative solutions for pressing health challenges.

Award 🏆

Dr. Lee’s groundbreaking research has earned him recognition and multiple awards. He is currently nominated for the Best Researcher Award at the Forensic Scientist Awards. His innovations, particularly in the development of perfluorocarbon (PFC) nanopolymersomes, have established him as a leader in nanomedicine. These nanocarriers are particularly promising for cancer therapy, providing effective oxygen delivery and drug loading for combined therapies.

Publication 📚

  • Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic 

    • Authors: YH Lee, YL Hong, TL Wu
    • Year: 2021
    • Citations: 84
  • Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicin-encapsulated PEG-b-PLGA copolymeric nanoparticles for targeted 

    • Authors: YH Lee, DS Chang
    • Year: 2017
    • Citations: 66
  • Synthesis and biological evaluation of quercetin–zinc (II) complex for anti-cancer and anti-metastasis of human bladder cancer cells
    • Authors: YH Lee, PT Tuyet
    • Year: 2019
    • Citations: 42
  • Chitosan/PVA hetero-composite hydrogel containing antimicrobials, perfluorocarbon nanoemulsions, and growth factor-loaded nanoparticles as a multifunctional dressing for 

    • Authors: YH Lee, SJ Lin
    • Year: 2022
    • Citations: 35
  • Synthesis, characterization, and biological verification of anti-HER2 indocyanine green–doxorubicin-loaded polyethyleneimine-coated perfluorocarbon double nanoemulsions for 

    • Authors: YH Lee, YT Ma
    • Year: 2017
    • Citations: 32
  • Anti-EGFR indocyanine green-mitomycin C-loaded perfluorocarbon double nanoemulsion: A novel nanostructure for targeted photochemotherapy of bladder cancer cells
    • Authors: YH Lee, YC Lin
    • Year: 2018
    • Citations: 24
  • Fluid shear stress induces cell cycle arrest in human urinary bladder transitional cell carcinoma through bone morphogenetic protein receptor-smad1/5 pathway
    • Authors: YH Lee, CW Lai, YC Cheng
    • Year: 2018
    • Citations: 19
  • Synthesis, characterization, and biological evaluation of anti-her2 indocyanine green-encapsulated peg-coated plga nanoparticles for targeted phototherapy of breast cancer cells
    • Authors: YH Lee, YH Lai
    • Year: 2016
    • Citations: 17
  • Reduction of oxygen inhibition effect for microalgal growth using fluoroalkylated methoxy polyethylene glycol-stabilized perfluorocarbon nano-oxygen carriers
    • Authors: YH Lee, YL Yeh
    • Year: 2015
    • Citations: 16
  • Using fluorochemical as oxygen carrier to enhance the growth of marine microalga Nannochloropsis oculata
    • Authors: YH Lee, YL Yeh, KH Lin, YC Hsu
    • Year: 2013
    • Citations: 15

Conclusion 📝

Dr. Yu-Hsiang Lee’s career has been marked by a series of groundbreaking contributions to biomedical engineering, particularly in nanomedicine and biomaterials. His work not only addresses crucial health challenges but also paves the way for new therapeutic strategies in cancer treatment and chronic wound healing. As a distinguished professor, he continues to lead innovative research that bridges science, engineering, and medicine, making significant strides toward improving patient outcomes and advancing medical technology.

Yidan Liu | Nanomaterials | Best Researcher Award

Assist. Prof. Dr. Yidan Liu | Nanomaterials | Best Researcher Award

Zhejian Sci-Tech University | College of Textile Science and Engineering (International Institute of Silk) | China

Yidan Liu is a Lecturer at the Zhejiang Sci-Tech University, specializing in Materials Science and Engineering. He earned his Doctor of Engineering in Materials Science and Engineering from Shanghai University in 2023, after completing his Master’s in Engineering from Zhejiang Sci-Tech University in 2018. He has conducted research as an exchange student at The Hong Kong Polytechnic University in 2017. Liu’s work focuses on the photo deposition synthesis of nanomaterials for electrocatalysis applications, with a particular emphasis on hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO2RR).

Profile

Orcid

Strengths for the Awards

  • Innovative Research: Liu has developed groundbreaking strategies for the synthesis of nanomaterials using photodeposition techniques, which have wide applications in electrocatalysis (e.g., hydrogen evolution reaction and carbon dioxide reduction).
  • High-Impact Publications: Liu’s work has been published in high-impact journals such as ACS Nano and Materials Horizons, showcasing his contributions to material science, particularly in the development of bimetallic core-shell nanocrystals and their electrocatalytic properties.
  • Multinational Collaboration: He has worked in collaboration with top research institutions like Sharif University of Technology, Fudan University, and The Hong Kong Polytechnic University, demonstrating a strong international research network.
  • Strong Technological Expertise: Liu has mastered several advanced techniques such as TEM, SEM, XPS, and electrochemical workstations, which support his innovative research. His patent portfolio also reflects his ability to translate research into practical applications.

Education 📚

Yidan Liu holds a Doctor of Engineering in Materials Science and Engineering from Shanghai University (2019–2023). He also completed his Master’s in Engineering from Zhejiang Sci-Tech University (2015–2018). During his academic journey, he participated as an exchange student at The Hong Kong Polytechnic University in 2017. His research interests span materials chemistry, nanomaterials, and electrocatalysis.

Experience

Yidan Liu currently serves as a Lecturer at Zhejiang Sci-Tech University since November 2023. Prior to this, he pursued his doctoral studies at Shanghai University, where his research focused on the photodeposition synthesis of nanomaterials. Liu has gained experience working with several prestigious institutions, including collaborations with Sharif University of Technology and Dalian Institute of Chemical Physics. He has also contributed to numerous peer-reviewed publications in well-regarded scientific journals.

Research Interests 🔬

Yidan Liu’s research primarily revolves around the synthesis and application of nanomaterials in electrocatalysis. His key focus areas include the design and development of metal nanocrystals, specifically through photodeposition methods, for applications in hydrogen evolution and CO2 reduction reactions. His research also involves the fabrication of bimetallic core-shell nanostructures and the exploration of their electrocatalytic performance.

Awards 🏆

Liu has been recognized for his academic excellence with several honors, including the National Inspirational Scholarship, Outstanding Class Cadre, Merit Student, and Outstanding Graduate awards. These accolades reflect his dedication to research and his contribution to advancing materials science.

Publications 📑

Yidan Liu has authored numerous peer-reviewed publications in high-impact journals, contributing significantly to the fields of materials science and nanotechnology. Notable publications include:

  1. Liu Y., Ji Y., et al. “A surfactant-free and general strategy for the synthesis of bimetallic core-shell nanocrystals on rGO through the targeted photodeposition.” ACS Nano, 2023, 17, 15, 15085−15096. DOI link
  2. Liu, Y., Yodsin N., et al. “Photochemical engineering unsaturated Pt islands on supported Pd nanocrystals for a robust pH-universal hydrogen evolution reaction.” Materials Horizons, 2024, 11, 8, 1964−1974.
  3. Liu Y., Naseri A., et al. “Shape-controlled photochemical synthesis of noble metal nanocrystals based on reduced graphene oxide.” ACS Applied Materials & Interfaces, 2022, 14, 14, 16527−16537.
  4. Liu, Y., Ren, X., et al. “The lattice mismatch-driven photochemical self-assembly of supported heterostructures for stable and enhanced electrocatalytic carbon dioxide reduction reaction.” Molecules, 2024, 29, (23), 5560.
  5. Liu Y., Fu K., et al. “Supercritical CO2 extraction for the determination of tetrachloroethylene residues in dry-cleaned apparel.” Analytical Methods, 2018, 10, 19, 2242−2250.

Conclusion

Yidan Liu is a highly dedicated researcher and educator in the field of materials science, with a focus on nanomaterial synthesis and electrocatalysis. His work continues to push the boundaries of materials chemistry, specifically in the development of advanced strategies for electrocatalytic reactions. Liu’s contributions to the field have been widely recognized, and he remains committed to furthering research in nanomaterials and sustainable energy solutions.

Willian Becker | Nanotecnologia | Best Researcher Award

Dr. Willian Becker | Nanotecnologia | Best Researcher Award

Dr at Universidade Federal do Rio de Janeiro, Brazil

Dr. Willian Pinheiro Becker is a dedicated researcher and biochemist currently pursuing his Ph.D. in Biochemistry and Molecular Biology at the Federal University of Rio de Janeiro (UFRJ), under the guidance of Jasmin. He holds a Master’s degree in the same field, with extensive training in biotechnology and toxicological analyses. Dr. Becker has a strong background in cytology and cellular biology, contributing to research and development initiatives at UFRJ’s Multidisciplinary Research Center. His work focuses on the molecular mechanisms behind cell differentiation, with applications in biotechnology and nanotechnology. He has been a recipient of multiple research grants from FAPERJ and is actively involved in advancing molecular diagnostics.

Profile

ORCID

Educational

      • Ph.D. in Progress in Biochemistry and Molecular Biology, Multicenter Postgraduate Program in Biochemistry and Molecular Biology (PMBQBM), Brazil. Advisor: Jasmin.
        Grantee: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do RJ (FAPERJ), Brazil.
      • Master’s in Biochemistry and Molecular Biology (2020–2022), PMBQBM, Brazil.
        Advisor: Jasmin.
        Grantee: FAPERJ, Brazil.
      • Bachelor’s in Biomedicine (2010–2014), Universidade CatĂłlica de PetrĂłpolis (UCP), Brazil.
        Advisor: Dr. Adriana Afonso.

Professional Experience

Dr. Becker is currently a research fellow at the Universidade Federal do Rio de Janeiro (UFRJ), where he has been involved in research and development activities at the NĂșcleo Multidisciplinar de Pesquisa (NUMPEX-BIO) since 2019. He has been working under an exclusive dedication contract, focusing on cellular biology, biotechnology, and toxicological assessments. His current position is funded by FAPERJ. His research primarily revolves around biochemistry and molecular biology, specifically in areas such as cell differentiation, cellular biology, and cytology. Dr. Becker has contributed to significant research projects since joining UFRJ, with ongoing collaborations in multidisciplinary teams focused on biotechnology applications and molecular diagnostics.

Research Interests

Dr. Becker’s research interests span several critical areas of biological and health sciences, including:

  • Biochemistry and Molecular Biology
  • Biotechnology and its applications in cellular differentiation and biomineralization
  • Toxicological evaluations in the pharmaceutical context
  • Cytology and cellular biology, with a focus on molecular diagnostics

Author Metrics

  • Dr. Becker’s research interests span several critical areas of biological and health sciences, including:
    • Biochemistry and Molecular Biology
    • Biotechnology and its applications in cellular differentiation and biomineralization
    • Toxicological evaluations in the pharmaceutical context
    • Cytology and cellular biology, with a focus on molecular diagnostics

Publications

 

Source:Willian Pinheiro Becker