Shujun Li | Chemistry and Materials Science | Best Researcher Award

Dr. Shujun Li | Chemistry and Materials Science | Best Researcher Award

Ph.D. in Materials at University of Science & Engineering | China

Dr. Shujun Li is a highly accomplished materials scientist currently serving as a researcher at Sichuan University of Science & Engineering. With a Ph.D. in Engineering from Lanzhou University of Technology (2023), Dr. Li has established himself in the fields of nanotechnology, metallic material engineering, and environmental remediation. His dedication to science is reflected in his contributions to cutting-edge research projects, patented technologies, and the mentorship of future scientists. Through practical innovations and scholarly excellence, he continues to advance the integration of nanomaterials into real-world applications, particularly in addressing industrial and ecological challenges.

Professional Profile

Scopus

Education

Dr. Shujun Li earned his Doctor of Philosophy in Engineering in 2023 from Lanzhou University of Technology, a premier institution known for technological research. His academic journey was driven by a passion for materials science, with a specialized focus on nano-functional materials, new energy applications, and metal quality control systems. During his doctoral studies, he laid the groundwork for several high-impact innovations and engaged in multidisciplinary research that bridged chemical engineering, metallurgy, and environmental science an academic foundation that continues to influence his current research endeavors.

Experience

Over the years, Dr. Shujun Li has accumulated significant experience in both academic and industry-focused research. He has led four enterprise-level industrial projects and a university-funded scientific initiative, all of which were geared toward the development and optimization of advanced materials. He also contributed to a high-profile National Natural Science Foundation of China (NSFC) project, reflecting his credibility and national recognition. His hands-on work includes collaboration with engineering teams, supervising student researchers, and translating laboratory discoveries into commercially viable solutions demonstrating his unique ability to connect theory with practical impact.

Research Interest

Dr. Shujun Li research interests are at the intersection of material innovation and environmental responsibility. He specializes in the preparation and application of nanomaterials and metallic materials, particularly their use in pollution control, heavy metal removal, and sustainable construction. His recent work on nano-composites for radioactive wastewater treatment, industrial slag identification, and ultra-high-strength automotive steel reflects a strategic focus on solving high-stakes industrial and ecological problems. His passion for functional materials aligns closely with global needs for sustainability, innovation, and cleaner technologies.

Awards

Dr. Shujun Li has received three prestigious awards in recognition of his scientific and technical excellence. Among them, he was notably honored as the “Sichuan Outstanding Instructor”, a title awarded for his exceptional mentorship that enabled students to achieve national honors in physics competitions. His ability to combine academic leadership with research innovation has positioned him as both a top-tier scientist and a transformative educator. These accolades affirm his status as an influential figure within his field, acknowledged for both scholarly impact and academic contribution.

Publications

Dr. Shujun Li has made significant strides in the fields of nanomaterials and metallurgical science, authoring 12 peer reviewed articles in high-impact SCI-indexed journals, with 6 of these as first author.

  1. Adsorption performance of nano-composites for radioactive wastewater treatment
    Journal: Hazardous Materials
    Published on: May 2023
    Citation: 22

  2. Slag phase analysis via XRD coupled spectroscopy
    Journal: Materials Chemistry and Physics
    Published on: September 2022
    Citation: 15

  3. Mechanical behavior of ultra-high-strength automotive steel
    Journal: Materials Science and Engineering 
    Published on: March 2021
    Citation: 18

  4. Nano-ZnO modified biochar for cadmium removal in water treatment
    Journal: Chemosphere
    Published on: December 2020
    Citation: 20

  5. Graphene-oxide enhanced aluminum alloy composites
    Journal: Alloys and Compounds
    Published on: July 2020
    Citation: 13

  6. Thermal stability of nickel-titanium shape memory alloys
    Journal: Materials Letters
    Published on: February 2019
    Citation: 10

Conclusion

Dr. Shujun Li is a prominent researcher whose work resonates with the core values of scientific innovation, interdisciplinary impact, and community advancement. His expertise in nano-functional and metallic materials has not only resulted in real-world industrial applications and environmental benefits but has also strengthened China’s position in advanced material science. As a committed educator and a pioneering scientist, Dr. Li is an exemplary candidate for the Best Researcher Award. His journey continues to inspire academic excellence and forge new pathways in forensic, environmental, and materials science.

Neetu Yadav | Materials Science | Best Researcher Award

Ms. Neetu Yadav | Materials Science | Best Researcher Award

Department of Physics, University of Lucknow | India

Neetu Yadav is a passionate and dedicated researcher specializing in Material Science, with a keen interest in humidity and gas sensors. Born on April 18, 1996, in India, she currently resides in Pantnagar, Uttarakhand. Her academic journey, combined with a growing list of publications, reflects her commitment to advancing sensor technology through nanomaterials and transition metal oxides. With excellent research, communication, and analytical skills, Neetu brings a multidisciplinary approach to scientific inquiry, bridging physics, chemistry, and materials engineering.

Professional profile👤

Scopus

Google Scholar

ORCID

Strengths for the Awards✨

Ms. Neetu Yadav exemplifies the profile of an emerging researcher in the domain of material science and sensor technology. Her ongoing Ph.D. research at the University of Lucknow focuses on transition metal oxides for gas and humidity sensing applications, a field of significant relevance to environmental monitoring and industrial safety. Despite being at an early stage of her career, she has already co-authored 10+ peer-reviewed publications in reputable journals such as Applied Surface Science, International Journal of Hydrogen Energy, and Physica E, with multiple articles indexed in Scopus and cited internationally.

Her collaborative projects and contributions to interdisciplinary studies involving nanostructures, thin films, irradiation effects, and sensor fabrication underscore her technical competence. She has also co-authored book chapters published by Springer and other academic platforms, indicating her global academic reach. Moreover, her participation in national and international conferences, workshops, and symposiums, as well as involvement in outreach activities like essay competitions and inter-university sports, highlights her holistic development.

🎓 Education

Neetu Yadav is presently pursuing her Ph.D. in Material Science from the Department of Physics, University of Lucknow, focusing on the synthesis and characterization of transition metal oxides for sensor applications. She completed her Master’s in Physics (2019) from the same university with a second division. Prior to that, she earned her B.Sc. in Physics, Chemistry, and Mathematics (2017) from Kumaun University, securing a first division. She also completed her Intermediate and High School from Rajeev Gandhi Navodaya Vidhyalaya, both with top ranks.

🧪 Experience

Neetu has developed hands-on experience through intensive lab work, workshops, and conferences. Her current research explores optical and structural properties of advanced materials, focusing on their applications in gas and humidity sensing. She has actively participated in experimental setups involving thin-film deposition, surface modification via ion irradiation, and nanomaterial synthesis — enriching her technical proficiency and collaborative skills.

🔍 Research Interests On Materials Science

Her research interests center around the synthesis and structural characterization of transition metal oxides, sensor device fabrication, thin films, and ion beam irradiation effects. She aims to enhance sensor performance for environmental monitoring by manipulating nano-scale properties of oxides like MoO₃, WO₃, SnO₂, and CuO. Her interdisciplinary curiosity also extends into nanotechnology’s societal and ethical dimensions. 📊

🏆 Awards & Recognition

Neetu received an Honorable Mention in the All India Essay Writing Event (2016), organized by Shri Ram Chandra Mission & the UN Information Centre. She has also earned accolades in district-level and inter-parliamentary volleyball tournaments. Her involvement in academic events and diverse interests from chess to painting reflect a well-rounded personality.

📚 Publications

Below are selected publications showcasing Neetu Yadav’s contributions to materials science and sensor technology:

  1. Gamma irradiation induced surface modification of V₂O₅ thin films, Applied Surface Science, 2025 — cited by researchers for its relevance to sensor enhancement mechanisms.

  2. Analysis of nanostructured Bi₂O₃-doped MoO₃, Materials Today: Proceedings, 2024 — contributed to optical and humidity sensor evaluation.

  3. Room temperature LPG sensing of Ag-doped CuO:SnO₂, Physica E, 2024 — investigated gas sensing efficiency.

  4. Effects of 100 MeV Ni⁷⁺ ion irradiation on MoO₃ thin films, Nuclear Instruments and Methods B, Oct 2024.

  5. Enhanced hydrogen gas sensing with Ag-doped WO₃, International Journal of Hydrogen Energy, 2023.

  6. SnO₂@ZnO based chemiresistor for Ammonia sensing, Materials Chemistry and Physics, Dec 2023.

  7. Yttrium-Cerium oxide sensor for H₂ detection, Engineering Proceedings, 2023.

  8. NiO and SnO₂ nanoparticles for humidity sensing, Interactions, 2022.

  9. XRD studies of sol-gel derived SnO₂, Int. Conf. on Materials Processing & Applications, 2023.

  10. 120MeV Ni⁷⁺ irradiation effects on WO₃, Journal of Alloys and Compounds, 2025.

📘 Book Chapters:

  • Influence of Temperature on Humidity Sensor (2023), in IIP Series Vol. 3.

  • Nanotechnology: Social Acceptance & Privacy (2024), Springer.

  • Role of Nanotechnology in Sensor Fabrication (2023), IIP Series Vol. 3.

🧠 Conclusion

Neetu Yadav stands out as a promising researcher whose work embodies academic rigor, technical innovation, and societal relevance. Her deep focus on material-based sensors and her contributions through high-impact publications and active participation in global scientific discussions make her an outstanding candidate for the “Best Researcher Award” in Forensic Scientist Awards. 🌟 Her fusion of scientific creativity, hands-on experimentation, and cross-disciplinary collaboration demonstrates not only academic excellence but a steadfast commitment to real-world impact.

Swastika Banerjee | Materials | Best Researcher Award

Assist. Prof. Dr. Swastika Banerjee | Materials | Best Researcher Award

Assistant Professor | Indian Institute of Technology Roorkee | India

Dr. Swastika Banerjee is a distinguished computational chemist and materials scientist, currently serving as an Assistant Professor in the Department of Chemistry at IIT Roorkee, India. With a strong research background in theoretical chemistry and materials informatics, she has made significant contributions to energy storage, electrochemistry, and computational materials design. Her work integrates advanced simulation techniques to develop novel materials for sustainable energy solutions.

Profile

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

Diverse Research Experience – With multiple postdoctoral positions at UC San Diego, University of Luxembourg, Lawrence Berkeley National Laboratory, and Shenzhen University, Banerjee has gained international exposure and collaborated with world-class researchers.

Impactful Publications – Her research is published in high-impact journals such as Nature Communications, Journal of the American Chemical Society (JACS), Advanced Functional Materials, and ACS Applied Materials & Interfaces, demonstrating strong research impact. Many of these papers are as a corresponding author, indicating leadership in her field.

Strong Contributions to Energy Storage and Materials Science – Her computational work on lithium-ion batteries, sodium-ion batteries, and solid electrolytes contributes significantly to advancing next-generation energy storage solutions, which are crucial for sustainable energy applications.

Research Grants & Fellowships – She has secured competitive research grants such as the EMR-II/ASPIRE Grant (2024), Faculty Initiation Grant (IIT Roorkee, 2022), Core Research Grant (SERB, DST, India, 2022), and was offered the Ramanujan Fellowship and Alexander von Humboldt Fellowship.

Patents & Innovations – A patent on “Chlorine-based sodium solid electrolyte” highlights her ability to translate research into practical applications, an essential factor for the award.

Recognized Expertise – She serves as a reviewer for high-impact journals (Angewandte Chemie, Chemistry of Materials, Joule, Nature Communications), showcasing her standing in the scientific community.

Education 🎓

Dr. Banerjee obtained her Ph.D. from the Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore (2011-2017). Prior to that, she earned an M.Sc. in Chemistry from IIT Kharagpur (2009-2011), securing the 3rd rank in her batch, and a B.Sc. in Chemistry (Hons) from The University of Burdwan (2006-2009), where she achieved the 1st rank in her university.

Experience 💼

  • Assistant Professor, IIT Roorkee (2022-Present)
  • Postdoctoral Associate, University of Luxembourg (Aug 2021 – Mar 2022)
  • Postdoctoral Associate, University of California San Diego, USA (Mar 2019 – Jul 2021)
  • Postdoctoral Researcher & Affiliate, Lawrence Berkeley National Laboratory & Shenzhen University, China (Jul 2017 – Feb 2019)
  • Research Associate, Jawaharlal Nehru Center for Advanced Scientific Research, India (Jan 2017 – Jun 2017)
  • Visiting Scientist, Institute of Semiconductors, Chinese Academy of Science, China (Nov 2016 – Dec 2016)

Research Interests On Materials🔍

Dr. Banerjee’s research focuses on computational materials science, exploring:

  • Non-local many-body dispersion interactions in materials
  • Electrochemistry and interfacial phenomena
  • Battery materials and energy storage solutions
  • Non-adiabaticity in chemical reactions
  • Thermoelectric properties of nanostructures
  • First-principles electronic structure theory
  • Algorithmic development for large-scale simulations
  • Materials informatics and data infrastructure

Research Contributions 🎯

Dr. Banerjee has advanced computational methods such as Density Functional Theory (DFT), Boltzmann Transport Equation modeling, and Non-Adiabatic Molecular Dynamics to study energy storage materials, excited state dynamics, and charge transport in semiconductors. Her theoretical insights have led to new frameworks for lithium superionic conductors and efficient electrode materials for next-generation batteries.

Awards & Recognitions 🏆

  • EMR-II/ASPIRE Grant, CSIR, India (2024)
  • Faculty Initiation Grant, IIT Roorkee (2022)
  • Core Research Grant, SERB, DST, India (2022)
  • Best Poster Awards at Chemical Frontiers (2015), Theoretical Chemistry Symposium (2014), Winter School on Frontiers in Materials (2014), and STCC-FC (2013)
  • Jawaharlal Nehru Memorial Award for securing 1st rank in The University of Burdwan (2010)
  • Alexander von Humboldt Fellowship for Postdoctoral Research (declined, 2021)
  • Ramanujan Fellowship (declined, 2021)
  • National Key R&D Program of China & National Natural Science Foundation of China Grants (2017)
  • Merit Scholarship, IIT Kharagpur (2010-2011)

Publications 📚

  1. Rechargeable alkali-ion battery materials: theory and computation

    • Authors: A Van der Ven, Z Deng, S Banerjee, SP Ong
    • Year: 2020
    • Citations: 255
  2. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries

    • Authors: EA Wu, S Banerjee, H Tang, PM Richardson, JM Doux, J Qi, Z Zhu, …
    • Year: 2021
    • Citations: 196
  3. Tunable Lithium-Ion Transport in Mixed-Halide Argyrodites Li6–xPS5–xClBrx: An Unusual Compositional Space

    • Authors: SV Patel, S Banerjee, H Liu, P Wang, PH Chien, X Feng, J Liu, SP Ong, …
    • Year: 2021
    • Citations: 136
  4. Possible application of 2D-boron sheets as anode material in lithium ion battery: A DFT and AIMD study

    • Authors: S Banerjee, G Periyasamy, SK Pati
    • Year: 2014
    • Citations: 99
  5. Bridging the gap between simulated and experimental ionic conductivities in lithium superionic conductors

    • Authors: J Qi, S Banerjee, Y Zuo, C Chen, Z Zhu, MLH Chandrappa, X Li, SP Ong
    • Year: 2021
    • Citations: 84
  6. Origin of the Order–Disorder Transition and the Associated Anomalous Change of Thermopower in AgBiS2 Nanocrystals: A Combined Experimental and Theoretical Study

    • Authors: SN Guin, S Banerjee, D Sanyal, SK Pati, K Biswas
    • Year: 2016
    • Citations: 52
  7. Anodic performance of black phosphorus in magnesium-ion batteries: the significance of Mg–P bond-synergy

    • Authors: S Banerjee, SK Pati
    • Year: 2016
    • Citations: 49
  8. Thermodynamics and kinetics of the cathode–electrolyte interface in all-solid-state Li–S batteries

    • Authors: ML Holekevi Chandrappa, J Qi, C Chen, S Banerjee, SP Ong
    • Year: 2022
    • Citations: 46
  9. Motif-based design of an oxysulfide class of lithium superionic conductors: Toward improved stability and record-high Li-ion conductivity

    • Authors: S Banerjee, X Zhang, LW Wang
    • Year: 2019
    • Citations: 31
  10. Synthetic control of structure and conduction properties in Na–Y–Zr–Cl solid electrolytes

  • Authors: E Sebti, J Qi, PM Richardson, P Ridley, EA Wu, S Banerjee, R Giovine, …
  • Year: 2022
  • Citations: 30

Conclusion 🔖

Dr. Swastika Banerjee is a leading scientist in the field of computational chemistry and materials science. With a deep understanding of first-principles simulations and data-driven materials design, she continues to push the boundaries of sustainable energy research. Through her academic and research contributions, she is shaping the future of next-generation energy storage and electronic materials development.