Xiao-Wu Lei | Materials | Best Researcher Award

Prof. Xiao-Wu Lei | Materials | Best Researcher Award

Jining University | China

Dr. Xiao-Wu Lei is a distinguished Associate Professor in the Department of Chemistry and Chemical Engineering at Jining University, China. Born on January 8, 1984, in PingYao, Shanxi Province, Dr. Lei has built a strong academic and research foundation in the field of inorganic functional materials. With a vibrant passion for cutting-edge research and an impressive portfolio of high-impact publications, he is recognized as a leading scientist in the synthesis and application of novel hybrid materials, intermetallic compounds, and photoluminescent systems.

Professional profile👤

Scopus

Strengths for the Awards✨

  • Exceptional Publication Record
    Dr. Xiao-Wu Lei has published extensively in high-impact journals such as Angewandte Chemie International Edition, Advanced Science, Chemical Science, ACS Applied Materials & Interfaces, Advanced Optical Materials, and Chemical Engineering Journal. His research spans over 20 high-profile papers within the last 5 years, signifying a high level of sustained productivity and relevance.

  • Research Focus on Cutting-edge Materials
    His work focuses on polar intermetallics, metal chalcogenometalates, hybrid metal halides, and metal–organic frameworks. These areas are central to advances in photocatalysis, scintillation, solar energy, and optoelectronic devices, making his research extremely pertinent to current global technological needs.

  • Expertise and Versatility
    Dr. Lei demonstrates mastery over both experimental and computational techniques—ranging from solid-state synthesis and solvothermal methods to X-ray crystallography and electronic structure calculations. His skillset includes the use of complex software like WIEN2K, CASTEP, and SHELXTL.

  • Strong International Impact
    He has multiple collaborative publications with global visibility, often co-authoring with internationally recognized scholars. His recent works in fluorescence sensing, X-ray scintillators, and lead-free perovskites are aligned with green and sustainable material development, highlighting both scientific depth and environmental relevance.

🎓 Education

Dr. Lei received his Bachelor of Science in Chemistry from Jilin University (2000–2004), one of China’s most prestigious institutions. He pursued his Ph.D. in Inorganic Chemistry at the Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (2004–2010), under the guidance of Prof. Jiang-Gao Mao, an editor of Journal of Solid State Chemistry. His academic background provided him with a robust foundation in solid-state synthesis and materials characterization.

👨‍🏫 Experience

Since August 2010, Dr. Lei has served as an Associate Professor at Jining University, where he has contributed extensively to both teaching and research. With over a decade of academic service, he has supervised student research projects and led numerous experimental investigations in functional materials. His technical skills include advanced characterization techniques (XRD, IR, UV-Vis, TGA, SC-XRD), and computational modeling (WIEN2K, CASTEP, etc.), making him a multifaceted researcher.

🔍 Research Interests On Materials

Dr. Lei’s research revolves around inorganic functional materials, with a focus on:

  • Polar intermetallics and Zintl phases for thermoelectric and superconducting applications.

  • Metal chalcogenometalates with properties suited for photocatalysis, magnetism, and optics.

  • Hybrid metal halides for solar cells and X-ray scintillators.

  •  Further interests: microporous materials, metal–organic frameworks (MOFs), and luminescent materials. His work blends theoretical modeling and experimental synthesis, contributing to next-generation optoelectronic technologies.

🏆 Awards & Recognition

Dr. Lei is a strong nominee for the Research Excellence Award for Emerging Scientists at Jining University due to his exceptional contributions in developing advanced luminescent and hybrid materials. His research is regularly published in top-tier international journals, including Angewandte Chemie, Advanced Science, Chemical Science, and ACS Applied Materials & Interfaces, demonstrating both innovation and international relevance. 🏅📈

📚 Publications

1. Hybrid metal halide family with color-time-dual-resolved phosphorescence for multiplexed information security applications

  • Authors: Liu, Yuhang; Yan, Tianyu; Dong, Menghan; … Kong, Xiangwen; Lei, Xiaowu

  • Year: 2025

  • Citations: 3

2. Zero-dimensional cadmium halide with broad band yellow light emission for white light-emitting diodes

  • Authors: Lin, Na; Hu, Zhao Yang; Zhang, Xinyue; … Jing, Zhihong; Chen, Zhiwei

  • Year: 2025

  • Citations: 0

3. Synthesis and stability of one-dimensional red-emitting manganese-based Organic–inorganic halide

  • Authors: Wang, Danyang; Wang, Shanxiao; Tian, Chaoyang; … Lei, Xiaowu; Yu, Fang

  • Year: 2025

  • Citations: 1

4. In Situ Halide Vacancy Tuning of Low-Dimensional Lead Perovskites to Realize Multiple Adjustable Luminescence Performance

  • Authors: Sun, Chen; Jing, Changqing; Li, Dongyang; … Fei, Honghan; Lei, Xiaowu

  • Year: 2025

  • Citations: 0

5. Synchronously Improved Multiple Afterglow and Phosphorescence Efficiencies in 0D Hybrid Zinc Halides With Ultrahigh Anti-Water Stabilities

  • Authors: Zhao, Jianqiang; Wang, Danyang; Yan, Tianyu; … Yan, Dongpeng; Lei, Xiaowu

  • Year: 2024

  • Citations: 17

6. Zero-dimensional organic-inorganic hybrid zinc halide with stable broadband blue light emissions

  • Authors: Zhang, Jie; Ma, Yu Xin; Wu, Ming; … He, Yuanchun; Lei, Xiaowu

  • Year: 2024

  • Citations: 0

7. Zero-dimensional cuprous halide scintillator with ultra-high anti-water stability for X-ray imaging

  • Authors: Lv, Jingning; Lin, Na; Zhang, Jiayi; … Lei, Xiaowu; Chen, Zhiwei

  • Year: 2024

  • Citations: 1

8. Zero-dimensional organic-inorganic hybrid indium halide perovskite with broadband yellow light emission

  • Authors: Wang, Qi; Jiang, Wei; Xuan, Pengyao; … Yue, Chengyang; Kong, Xiangwen

  • Year: 2024

  • Citations: 0

9. Near-unity broadband emissive hybrid manganese bromides as highly-efficient radiation scintillators

  • Authors: Gong, Zhongliang; Zhang, Jie; Deng, Xiangyuan; … He, Yuanchun; Lei, Xiaowu

  • Year: 2024

  • Citations: 8

10. One-Dimensional Red Light-Emissive Organic Manganese(II) Halides as X-Ray Scintillators

  • Authors: Yu, Fang; Zhang, Huiru; Gao, Wenwen; … Kong, Xiangwen; Yue, Chengyang

  • Year: 2024

  • Citations: 3

✅ Conclusion

Dr. Xiao-Wu Lei exemplifies academic excellence and innovative research. His interdisciplinary work in inorganic chemistry and material sciences, combined with a consistent publication record in top journals, positions him as a valuable contributor to global scientific advancement. With profound expertise in hybrid materials and luminescent technologies, he is an outstanding candidate for the Research Award Nomination by the Department of Chemistry and Chemical Engineering, Jining University.

Panagiotis Regkouzas | Materials | Best Researcher Award

Dr. Panagiotis Regkouzas | Materials | Best Researcher Award

Technical University of Crete | Greece

Dr. Panagiotis Regkouzas is a passionate environmental engineer from Chania, Greece, born on November 21, 1991. With a robust academic and professional foundation, he is currently a postdoctoral researcher at the Technical University of Crete. His career is defined by his dedication to sustainable development, specializing in biochar production, wastewater treatment, and the circular economy. Through national and international collaborations, Panagiotis contributes to innovative environmental engineering solutions that promote resource recovery and sustainable agriculture.

Professional profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Strong Academic Background:

    • PhD in Environmental Engineering with a specialization in biochar production, environmental applications, and wastewater treatment.

    • Dual master’s degrees with focused theses on biochar and wastewater reuse, directly supporting the sustainability and circular economy sectors.

  • Research Productivity & Impact:

    • Author/co-author of several peer-reviewed articles in reputed international journals such as Chemosphere, Environmental Science and Pollution Research, and Biomass Conversion and Biorefinery.

    • Published cutting-edge work on nanobiochar, graphene oxide biochars, and CNT-doped composites, showing innovation and depth in environmental nanotechnology.

  • Active Participation in High-Profile Projects:

    • Involved in European Union-funded projects like Horizon 2020 (PRIMA) and Marie Skłodowska-Curie Actions, indicating his role in top-tier international collaborations.

    • Project themes align with global environmental priorities such as circular economy, green technologies, and nature-based solutions.

  • Extensive Conference Participation & Visibility:

    • Regular presenter at international conferences (EGU, IEES, IWA, EURECA-PRO), reflecting academic leadership and scientific communication strength.

    • Frequent contributions in sessions on circular economy, wastewater valorization, and biochar technologies, underlining topic consistency and relevance.

🎓 Education

Panagiotis began his academic journey with a Master of Engineering (MEng) in Environmental Engineering at the Technical University of Crete (2009–2015), where he explored biochar applications for pollutant adsorption. He then pursued a Master of Science (MSc) in Advanced Water and Wastewater Treatment (2015–2017), focusing on valorizing municipal solid waste. His PhD (2017–2024) further delved into advanced biochar materials and their applications in removing emerging contaminants from water. Currently, he continues his research as a postdoctoral scholar in Circular Economy at the same institution.

🧪 Experience

With over 7 years of research and teaching experience at the Technical University of Crete, Panagiotis has worked on diverse projects ranging from biochar production and nanomaterials to wastewater treatment technologies. His roles include university research and teaching assistant, as well as laboratory assistant in courses on water treatment and environmental engineering. In 2024, he expanded his international experience as an Engineering Research Scientist at APS-Ekoinnowacje in Poland, emphasizing sustainable waste management and environmental innovation.

🔬 Research Interests On Materials

Panagiotis’s research interests lie in environmental sustainability with a sharp focus on circular economy principles. He is particularly interested in:

  • Biochar production from waste biomass

  • Adsorption of emerging micro-contaminants

  • Development of nanocomposite biochars

  • Wastewater and sludge treatment

  • Nature-based solutions like constructed wetlands
    His work bridges the gap between environmental engineering and practical, sustainable applications for agriculture and water systems.

🏆 Awards & Nominations

1. Title: Adsorption of selected organic micro-pollutants on sewage sludge biochar
Authors: P. Regkouzas, E. Diamadopoulos
Year: 2019
Citations: 158

2. Title: Ni (II) adsorption on biochars produced from different types of biomass
Authors: R.N. Mourgela, P. Regkouzas, F.M. Pellera, E. Diamadopoulos
Year: 2020
Citations: 14

3. Title: Biochar production from waste biomass: Characterization and evaluation for agronomic and environmental applications
Authors: F.M. Pellera, P. Regkouzas, I. Manolikaki, E. Diamadopoulos
Year: 2021
Citations: 12

4. Title: Production and characterization of graphene oxide-engineered biochars and application for organic micro-pollutant adsorption from aqueous solutions
Authors: P. Regkouzas, L. Sygellou, E. Diamadopoulos
Year: 2023
Citations: 10

5. Title: Effect of compost and compost-derived biochar on the growth of lettuce irrigated with water and treated wastewater
Authors: P. Regkouzas, N. Katie, K. Bontiotis, A. Stefanakis
Year: 2025
Citations: Not listed

6. Title: Assessing Biochar and Compost from the Organic Fraction of Municipal Solid Waste on Nutrient Availability and Plant Growth of Lettuce in a Pot Experiment
Authors: P. Regkouzas, I. Manolikaki, E. Diamadopoulos
Year: 2025
Citations: Not listed

7. Title: Effect of compost and compost-derived biochar on lettuce growth in a water and wastewater irrigated pot experiment
Authors: P. Regkouzas, N. Katie, K. Bontiotis, A. Stefanakis
Year: 2025
Citations: Not listed

8. Title: The role of biochar in a circular economy: from agriculture to water and wastewater treatment applications
Authors: P. Regkouzas, I. Asimakoulas, E. Athanasiadou, E. Koukouraki, …
Year: 2024
Citations: Not listed

9. Title: Production of advanced adsorptive materials based on biochar
Author: P. Regkouzas
Year: 2024
Citations: Not listed

10. Title: Global Challenges for a Sustainable Society: EURECA-PRO
Authors: P. Regkouzas, E. Diamadopoulos
Year: 2023
Citations: Not listed

✅ Conclusion

Panagiotis Regkouzas exemplifies the spirit of environmental innovation and sustainable engineering. With a solid foundation in education, a breadth of interdisciplinary experience, and a forward-looking research portfolio, he is a valuable asset to the scientific community and an outstanding nominee for this award. His work paves the way for greener technologies in water treatment, agriculture, and waste valorization, making impactful contributions both locally and globally 🌎🌿.

Deliang Zhang | Materials | Best Researcher Award

Prof. Dr. Deliang Zhang | Materials | Best Researcher Award

Professor | Qilu Institute of Technology | China

Prof. Dr. Deliang Zhang is an accomplished Associate Professor at the Qilu Institute of Technology, Shandong Province, China. His research focuses on the design and synthesis of new functional materials and their applications in energy and environmental fields. With a strong academic background and numerous contributions to his field, he has made significant strides in advancing material sciences.

Professional profile👤

Scopus

Strengths for the Awards✨

  • Prolific Publication Record: Dr. Zhang has an impressive track record, with 19 publications in high-impact journals like Nano Letters, Chemical Engineering Journal, and Applied Catalysis B: Environmental. His recent papers (2024, 2025) highlight ongoing contributions to cutting-edge research.
  • Diverse Research Experience: His work spans the design and synthesis of functional materials, with applications in energy and environmental fields, showcasing a broad expertise.
  • Research Leadership: Leading multiple significant projects, such as the Key Project of Science and Technology at Qilu Institute of Technology (2023) and the Natural Science Foundation of Shandong Province (2022), demonstrates his capacity to secure funding and guide research teams.
  • Academic Growth: His rapid academic progression from lecturer to associate professor between 2019 and 2021 reflects exceptional professional development and recognition.
  • Collaborative Network: Co-authorship with diverse research teams indicates a strong collaborative spirit, enriching his research through interdisciplinary contributions.

🎓 Education

  • Ph.D. in Science, Qingdao University of Science and Technology (2019–2023)
  • Master’s Degree, Qingdao University of Science and Technology (2016–2019)
  • Bachelor’s Degree, Liaocheng University (2012–2016)

💼 Experience

  • Associate Professor, Qilu Institute of Technology (Jan 2021 – Present)
  • Lecturer, Qilu Institute of Technology (Sep 2019 – Dec 2020)

🔬 Research Interests On Materials

  • Design and synthesis of new functional materials
  • Applications of functional materials in energy and environmental fields

🏆 Awards and Projects

  • Key Project of Science and Technology of Qilu Institute of Technology (Host, 2023)
  • Natural Science Foundation of Shandong Province (Host, 2022)
  • Youth Innovation Team of Shandong Higher Education Institution (Host, 2022)
  • National Natural Science Foundation of China (Participator, 2019)

📖 Publications

  1. Xu, C. C. et al.; Zhang, D. L.; Appl. Catal. B-Environ., 2025 (Accepted).
  2. Sun, S. C. et al.; Zhang, D. L.; Aggregate, 2025, e70016.
  3. Suo, L. L. et al.; Zhang, D. L.; Nano Lett., 2024, 24(47), 15159–15166.
  4. Li, X. Y. et al.; Zhang, D. L.; Chem. Eng. J., 2024, 493, 152460.
  5. Lv, S. H. et al.; Zhang, D. L.; Chem. Eng. J., 2024, 492, 152025.
  6. Zhang, D. L. et al.; Int. J. Hydrogen Energy, 2024, 90, 52–60.
  7. Yuan, H. M. et al.; Zhang, D. L.; ACS Appl. Nano Mater., 2024, 7(9), 10387–10395.
  8. Zhang, D. L. et al.; J. Alloys Compd., 2024, 972, 172881.
  9. Feng, L. et al.; Zhang, D. L.; Microchim. Acta, 2024, 191, 451.
  10. Zhang, D. L. et al.; Sci. China Mater., 2023, 66, 1362–1372.
  11. Zhang, D. L. et al.; Appl. Surf. Sci., 2023, 608, 155283.
  12. Zhang, D. L. et al.; J. Colloid Interface Sci., 2023, 629, 873–881.
  13. Zhang, D. L. et al.; Small, 2021, 17(13), 2005149.
  14. Zhang, D. L. et al.; Nanoscale, 2020, 12(5), 3370–3376.
  15. Zhang, D. L. et al.; Appl. Surf. Sci., 2020, 510, 145483.
  16. Zhang, D. L. et al.; Appl. Catal. B-Environ., 2019, 254, 471–478.
  17. Hu, Z. G. et al.; Zhang, D. L.; Electrochim. Acta, 2021, 391, 138932.
  18. Mou, H. Y. et al.; Zhang, D. L.; J. Mater. Chem. A, 2019, 7(10), 5719–5725.
  19. Mou, H. Y. et al.; Zhang, D. L.; J. Mater. Chem. A, 2019, 7(22), 13455–13459.

🌍 Conclusion

Dr. Deliang Zhang has established himself as a leading researcher in the synthesis of functional materials with applications in energy and the environment. His work has earned recognition through key projects and prestigious publications, making him a valuable asset to the scientific community.

Jihye Kim | Materials | Best Researcher Award

Dr. Jihye Kim | Materials | Best Researcher Award

Assistant Professor | Colorado School of Mines | United States

Dr. Jihye Kim is an accomplished Assistant Professor at the George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines. With a strong background in extractive metallurgy, resource recovery, and critical materials extraction, Dr. Kim has made significant contributions to sustainable materials processing. Her research focuses on innovative hydrometallurgical techniques, mineral carbonation for carbon sequestration, and chemical modeling of electrolyte systems. Dr. Kim is dedicated to fostering a stimulating learning environment that encourages students to explore, discover, and think critically beyond the classroom.

Professional profile👤

ORCID

Google Scholar

Scopus

Strengths for the Awards✨

  • Outstanding Research Contributions

    • Dr. Jihye Kim has an extensive publication record, including high-impact journal articles, conference papers, and book chapters.
    • Her research focuses on critical topics such as extractive metallurgy, mineral processing, carbon capture, and rare earth element recovery, all of which have significant industrial and environmental implications.
  • Strong Funding and Grant Success

    • She has successfully secured multiple high-value research grants, including funding from the National Science Foundation (NSF), Department of Energy (DOE), NASA, and the Alfred P. Sloan Foundation.
    • Active involvement as a Principal Investigator (PI) and Co-PI in multimillion-dollar research projects.
  • Awards and Recognitions

    • Recipient of the Ontario Trillium Scholarship ($160,000) and multiple academic scholarships and fellowships, demonstrating academic excellence and research impact.
    • Earned the Students Discovery Award (2021) at the University of Toronto, recognizing her research achievements.
  • Industrial and International Research Experience

    • Hands-on experience through engineering internships with Barrick Gold Corporation and National Metallurgical Laboratory, India.
    • Strong international collaborations with institutions in South Korea, Canada, and the USA.
  • Educational and Mentorship Contributions

    • Engaged in teaching undergraduate and graduate courses at the Colorado School of Mines.
    • Experience as a teaching assistant at University of Toronto and Seoul National University, shaping the next generation of metallurgical engineers.

Education 🎓

Dr. Kim earned her Doctor of Philosophy in Chemical Engineering from the University of Toronto (2017-2021), where she worked on sustainable valorization of steelmaking slag under the guidance of Professor Gisele Azimi. Prior to her Ph.D., she obtained a Master of Applied Science in Energy Systems Engineering (2014-2016) and a Bachelor of Applied Science in Energy Resources Engineering (2011-2014) from Seoul National University.

Experience 🌟

Dr. Kim’s academic and professional journey reflects her expertise in metallurgical and materials engineering. She is currently an Assistant Professor at Colorado School of Mines, where she leads cutting-edge research projects and teaches courses on chemical processing, transport phenomena, and hydrometallurgical processing. Previously, she was a Postdoctoral Fellow at the University of Toronto, focusing on resource-efficient hydrometallurgical recovery of platinum group metals and rare earth elements. Her teaching experience includes serving as a Teaching Assistant at the University of Toronto and Seoul National University. She also gained industry experience as an Engineering Intern at Barrick Gold Corporation (Canada) and the National Metallurgical Laboratory (India).

Research Interests On Materials 🔬

Dr. Kim’s research centers on sustainable resource recovery, extractive metallurgy, and carbon capture technologies. She specializes in hydrometallurgical processing, mineral carbonation for CO2 sequestration, critical materials extraction from secondary resources, and electrolyte system modeling. Her work aims to develop environmentally friendly and economically viable methods for metal recovery and waste valorization.

Awards & Honors 🏆

Dr. Kim has received numerous prestigious awards, including the Ontario Trillium Scholarship (2017-2021), the Students Discovery Award (2021), and multiple fellowships from the University of Toronto. She was also awarded the Brain Korea 21 Plus Scholarship, Academic-Industrial Scholarship from Hyundai Resources Development, and several merit-based scholarships from Seoul National University. Her outstanding academic achievements were recognized with Graduation with Honors (Cum Laude) from Seoul National University in 2014.

Publications 📚

Dr. Kim has published extensively in top-tier journals, contributing valuable insights into metallurgical and materials engineering. Some of her notable publications include:

  • The CO2 sequestration by supercritical carbonation of electric arc furnace slag

    • Authors: J Kim, G Azimi
    • Year: 2021
    • Citations: 42
  • An innovative process for extracting scandium from nickeliferous laterite ore: Carbothermic reduction followed by NaOH cracking

    • Authors: J Kim, G Azimi
    • Year: 2020
    • Citations: 22
  • Recovery of scandium and neodymium from blast furnace slag using acid baking–water leaching

    • Authors: J Kim, G Azimi
    • Year: 2020
    • Citations: 20
  • Valorization of electric arc furnace slag via carbothermic reduction followed by acid baking–water leaching

    • Authors: J Kim, G Azimi
    • Year: 2021
    • Citations: 19
  • Technospheric mining of niobium and titanium from electric arc furnace slag

    • Authors: J Kim, G Azimi
    • Year: 2020
    • Citations: 16
  • Matrix complexity effect on platinum group metals analysis using inductively coupled plasma optical emission spectrometry

    • Authors: J Kim, J Anawati, G Azimi
    • Year: 2018
    • Citations: 16
  • Effect of sulfuric acid baking and caustic digestion on enhancing the recovery of rare earth elements from a refractory ore

    • Authors: R Kim, H Cho, J Jeong, J Kim, S Lee, KW Chung, HS Yoon, CJ Kim
    • Year: 2020
    • Citations: 15
  • Selective precipitation of titanium, magnesium, and aluminum from the steelmaking slag leach liquor

    • Authors: J Kim, G Azimi
    • Year: 2022
    • Citations: 13
  • Mineral carbonation of iron and steel by-products: State-of-the-art techniques and economic, environmental, and health implications

    • Authors: S Wang, J Kim, T Qin
    • Year: 2024
    • Citations: 12
  • Recent advancements in hydrometallurgy: solubility and separation

    • Authors: KN Han, R Kim, J Kim
    • Year: 2024
    • Citations: 10

Conclusion 🎯

Dr. Jihye Kim is a dedicated researcher and educator committed to advancing metallurgical and materials engineering. Her work in extractive metallurgy, critical materials recovery, and sustainable processing methods contributes to the global effort toward environmentally responsible resource management. Through her innovative research, teaching, and mentorship, Dr. Kim continues to inspire the next generation of engineers and scientists in the field of materials engineering.

Dhiraj Kumar Rana | Materials | Best Researcher Award

Dr. Dhiraj Kumar Rana | Materials | Best Researcher Award

Postdoctoral Fellow | Indian Institute of Technology Delhi | India

Dr. Dhiraj Kumar Rana is a distinguished researcher in Materials Science and Polymer Engineering, currently serving as a National Post-Doctoral Fellow at the Department of Materials Science and Engineering, Indian Institute of Technology Delhi. His research primarily focuses on multiphase polymeric and elastomeric materials, functional smart materials, and their applications in energy storage, wearable electronics, and soft robotics. With a strong academic foundation and extensive research contributions, Dr. Rana has made significant advancements in flexible charge storage materials and elastomeric nanocomposites.

Profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Extensive Research Experience – With a career spanning over two decades in physical chemistry and photochemistry, Professor Yang has made significant contributions to the field.
  • Innovative Research in Phototherapy – His work on photochemical probes, nanotechnology for drug-controlled release, and phototherapy (both photodynamic and photothermal therapy) is impactful in medical and pharmaceutical sciences.
  • High Research Output – He has published 46 SCI-indexed research articles, with recent publications in top-tier journals like Biomaterials and Analytical Chemistry.
  • Funded Research Projects – Successfully secured grants, including the National Natural Science Foundation (21473101).
  • Intellectual Property Contributions – Holds four patents, demonstrating his focus on innovation and real-world applications.

Education 🎓

Dr. Rana obtained his B.Sc. in Physics (Honours) from North Orissa University, Baripada, in 2008, followed by an M.Sc. in Physics from NIT Rourkela in 2010. He further specialized in Advanced Materials Science and Technology with an M.Tech. from NIT Durgapur in 2013. His Ph.D., awarded by NIT Durgapur in 2019, focused on Experimental Condensed Matter Physics, emphasizing electrical and magnetic properties of polymer multiferroic nanocomposites.

Experience 🌍

Dr. Rana has held several research positions, including Junior Research Fellow at BIT Patna, Research Associate at NIT Durgapur, and Institute Post-Doctoral Fellow at IISER Mohali. Since 2022, he has been a National Post-Doctoral Fellow at IIT Delhi, contributing significantly to the development of novel polymeric materials for flexible electronics. His teaching experience includes courses in Engineering Physics and Advanced Physics at NIT Durgapur and Jharkhand Raksha Shakti University, Ranchi.

Research Interests On Materials🔬

Dr. Rana’s research encompasses a broad range of topics within Materials Science and Polymer Engineering. His expertise includes multiphase polymeric and elastomeric materials, dielectric and magnetic elastomers, flexible charge storage, nanomaterial synthesis (barium titanate, ferrite nanoparticles, graphene oxide, etc.), and applications in soft robotics and wearable electronics. He is proficient in advanced characterization techniques such as XRD, SEM, TEM, AFM, and various electrical, dielectric, and thermal analysis methods.

Awards 🏆

Dr. Rana has been recognized for his contributions to materials science through prestigious fellowships, including the SERB-National Post-Doctoral Fellowship. His research achievements have also earned him accolades in the field of advanced functional materials.

Publications 📚

  • Title: Electrical and room temperature multiferroic properties of polyvinylidene fluoride nanocomposites doped with nickel ferrite nanoparticles
    Authors: DK Rana, SK Singh, SK Kundu, S Roy, S Angappane, S Basu
    Publication Year: 2019
    Citations: 67

  • Title: Electrical and magnetic properties of polyvinyl alcohol–cobalt ferrite nanocomposite films
    Authors: DK Rana, SK Singh, SK Kundu, RJ Choudhary, S Basu
    Publication Year: 2018
    Citations: 34

  • Title: Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials
    Authors: PS Banerjee, DK Rana, SS Banerjee
    Publication Year: 2022
    Citations: 26

  • Title: Relaxor ferroelectric behavior of “A” site deficient Bismuth doped Barium Titanate ceramic
    Authors: T Badapanda, V Senthil, DK Rana, S Panigrahi, S Anwar
    Publication Year: 2012
    Citations: 25

  • Title: An easy synthesis of carbon-supported silver–cobalt bimetallic nanoparticles to study the electrocatalytic performance in alkaline borohydride fuel cell
    Authors: S Dey, S Pramanik, P Chakraborty, DK Rana, S Basu
    Publication Year: 2022
    Citations: 18

  • Title: Development of organic-inorganic flexible PVDF-LaFeO3 nanocomposites for the enhancement of electrical, ferroelectric and magnetic properties
    Authors: DK Rana, V Mehta, SK Kundu, S Basu
    Publication Year: 2020
    Citations: 18

  • Title: Enhanced multiferroic, magnetodielectric and electrical properties of Sm doped Lanthanum ferrite nanoparticles
    Authors: SK Kundu, DK Rana, L Karmakar, D Das, S Basu
    Publication Year: 2019
    Citations: 15

  • Title: Enhancement of electrical and magnetodielectric properties of BiFeO3 incorporated PVDF flexible nanocomposite films
    Authors: DK Rana, SK Kundu, RJ Choudhary, S Basu
    Publication Year: 2019
    Citations: 14

  • Title: Surfactant-free synthesis of carbon-supported silver (Ag/C) nanobars as an efficient electrocatalyst for alcohol tolerance and oxidation of sodium borohydride in alkaline medium
    Authors: S Dey, P Chakraborty, DK Rana, S Pramanik, S Basu
    Publication Year: 2021
    Citations: 13

  • Title: Influence of manganese on multiferroic and electrical properties of lanthanum ferrite nanoparticles
    Authors: SK Kundu, DK Rana, A Banerjee, D Das, S Basu
    Publication Year: 2019
    Citations: 7

Conclusion 📊

Dr. Dhiraj Kumar Rana is an accomplished scientist whose research has significantly contributed to the advancement of functional and smart materials. His expertise in polymeric nanocomposites and energy storage applications continues to drive innovation in flexible electronics and soft robotics. With an impressive publication record and ongoing research at IIT Delhi, Dr. Rana remains at the forefront of cutting-edge materials science research.

Chuan-Pei Lee | Materials | Best Researcher Award

Assoc. Prof. Dr. Chuan-Pei Lee | Materials | Best Researcher Award

Associate Professor | Department of Applied Physics and Chemistry, University of Taipei | Taiwan

Dr. Chuan-Pei Lee is an esteemed Associate Professor in the Department of Applied Physics and Chemistry at the University of Taipei, Taiwan. With a strong background in chemical engineering and a passion for nanomaterials and renewable energy, he has significantly contributed to the fields of nanotechnology, solar fuels, water splitting, and supercapacitors. His extensive research in electrochemical techniques has established him as a leading figure in energy-related applications. To date, Dr. Lee has authored 13 book chapters and 117 SCI papers, garnering over 5,470 citations and an H-index of 44.

Profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Outstanding Research Output 📚

    • Published 117 SCI papers, reflecting a strong research presence.
    • Contributed 13 book chapters, further demonstrating academic influence.
  • High Impact and Citation Metrics 📈

    • Google Scholar Citations: 5470
    • H-index: 44, showing significant contributions to the field.
    • Publications in prestigious journals like ACS Applied Materials & Interfaces, Nano Energy, J. Mater. Chem. A, and Materials Today Energy.
  • Diverse and Impactful Research Areas 🌍

    • Expertise in nanomaterials, solar energy, water splitting, and supercapacitors.
    • Work contributes to renewable energy solutions and sustainability.
    • Strong command over electrochemical techniques, crucial for energy storage research.
  • Collaboration and International Recognition 🤝

    • Co-authored papers with international research teams.
    • Worked with notable researchers from National Taiwan University, University of California, and RSC-affiliated institutions.

🎓 Education

  • Ph.D. in Chemical Engineering – National Taiwan University (2012)

💼 Experience

  • Associate Professor – Department of Applied Physics and Chemistry, University of Taipei, Taiwan (Present)
  • Research Collaborator – Various international research institutions focusing on nanomaterials and energy storage technologies.

🔬 Research Interests On Materials

Dr. Lee’s research revolves around the development of advanced materials for energy applications. His key areas of interest include:

  • Nanomaterials/Nanostructures – Synthesis and applications in energy storage and conversion.
  • Solar Energy & Solar Fuels – Enhancing the efficiency of solar energy harvesting and utilization.
  • Water Splitting Technology – Exploring innovative electrocatalysts for hydrogen production.
  • Supercapacitors – Designing high-performance electrodes for energy storage solutions.
  • Electrochemical Techniques – Studying charge transfer mechanisms and optimizing material properties for enhanced efficiency.

🏆 Awards & Recognitions

  • Recognized as a leading researcher in energy materials with a high citation index (H-index: 44).
  • Numerous awards for excellence in research and innovation in applied physics and chemistry.
  • Invited keynote speaker at multiple international conferences on nanotechnology and renewable energy.

📚 Selected Publications

Dr. Lee has published extensively in top-tier journals. Below are some of his notable works:

  1. Use of organic materials in dye-sensitized solar cells

    • Authors: CP Lee, CT Li, KC Ho
    • Year: 2017
    • Citations: 336
  2. Recent progress in organic sensitizers for dye-sensitized solar cells

    • Authors: CP Lee, RYY Lin, LY Lin, CT Li, TC Chu, SS Sun, JT Lin, KC Ho
    • Year: 2015
    • Citations: 273
  3. Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties

    • Authors: A Venkateswararao, KRJ Thomas, CP Lee, CT Li, KC Ho
    • Year: 2014
    • Citations: 202
  4. A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells

    • Authors: CP Lee, KY Lai, CA Lin, CT Li, KC Ho, CI Wu, SP Lau, JH He
    • Year: 2017
    • Citations: 159
  5. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte

    • Authors: MH Yeh, CP Lee, CY Chou, LY Lin, HY Wei, CW Chu, R Vittal, KC Ho
    • Year: 2011
    • Citations: 142
  6. Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black

    • Authors: CP Lee, PY Chen, R Vittal, KC Ho
    • Year: 2010
    • Citations: 136
  7. Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells

    • Authors: JY Li, CY Chen, CP Lee, SC Chen, TH Lin, HH Tsai, KC Ho, CG Wu
    • Year: 2010
    • Citations: 109
  8. 2,7-Diaminofluorene-based organic dyes for dye-sensitized solar cells: effect of auxiliary donor on optical and electrochemical properties

    • Authors: A Baheti, P Singh, CP Lee, KRJ Thomas, KC Ho
    • Year: 2011
    • Citations: 107
  9. Beaded stream-like CoSe₂ nanoneedle array for efficient hydrogen evolution electrocatalysis

    • Authors: CP Lee, WF Chen, T Billo, YG Lin, FY Fu, S Samireddi, CH Lee, …
    • Year: 2016
    • Citations: 97
  10. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells

  • Authors: A Baheti, KR Justin Thomas, CT Li, CP Lee, KC Ho
  • Year: 2015
  • Citations: 95

 

🔍 Conclusion

Dr. Chuan-Pei Lee is a distinguished researcher and academic in the field of applied physics and chemistry, with a deep expertise in nanomaterials, solar energy, and electrochemical energy storage. His groundbreaking research has significantly advanced energy-efficient technologies, leading to innovations in supercapacitors, solar cells, and water splitting techniques. His extensive publication record, high citation impact, and contributions to the scientific community underscore his status as a leading expert in his field. As an influential scientist, Dr. Lee continues to inspire and contribute to the advancement of sustainable energy solutions.