Guanyue Sun | Advanced Materials Engineering | Young Scientist Award

Dr. Guanyue Sun | Advanced Materials Engineering | Young Scientist Award

Dezhou university | China

Dr. Guanyue Sun is an emerging scholar in the field of electrical engineering, known for his expertise in high voltage electricity, insulation technology, and smart grid systems. His professional journey has been marked by dedication to both teaching and advanced research, contributing valuable insights to the development of power systems that are more reliable, efficient, and sustainable. As a lecturer and active researcher, he has consistently demonstrated a capacity to bridge theoretical knowledge with applied engineering solutions. His involvement in academic societies, editorial boards, and collaborative projects positions him as a young leader whose work is shaping the future of electrical engineering.

Professional Profile

Scopus

ORCID

Education

Dr. Guanyue Sun pursued a Master’s degree in Electrical Engineering at Xinjiang University, where he developed a strong foundation in power electronics, circuit analysis, and high-voltage technology. He later completed his doctoral studies at the School of Electrical and Electronics at Shandong University of Technology, where his research centered on advanced materials for power systems, smart grid design, and surge arrester technology. His academic training instilled in him both technical depth and a broad perspective, preparing him to address complex challenges in modern energy infrastructure.

Experience

As a lecturer at Texas College, Dr. Guanyue Sun integrates academic teaching with cutting-edge research, ensuring that his students are exposed to both classical engineering principles and the latest advancements in the field. He has led and contributed to several research projects, including studies on ZnO varistors, non-destructive testing of cable accessories, and surge arrester performance in UHV DC systems. His service extends beyond teaching; he is an active member of the China Electrotechnical Society and professional committees on industrial robotics and intelligent equipment. His editorial work with young boards of respected journals highlights his commitment to fostering academic exchange and advancing scholarly communication.

Research Interests

Dr. Guanyue Sun’s research interests cover a wide range of topics within electrical engineering and materials science. He is particularly engaged in the study of high-gradient low-residual voltage surge arresters and their applications in UHV DC networks. His work explores new materials for ZnO varistors to improve smart grid arresters, fault characteristics in high-voltage power cables, and innovative methods for online detection of ground transformer operating conditions. He has also delved into the analysis of insulation shielding in high-voltage cables, silicone rubber composites for DC applications, and novel nanogenerator materials. His investigations reveal a multidisciplinary approach, integrating power systems, materials engineering, and computational modeling.

Awards

Dr. Guanyue Sun has received recognition for his innovative research and technical contributions, which address critical challenges in electrical insulation and smart grid systems. His scientific achievements and patents demonstrate not only originality but also practical application, serving both academic and industrial needs. The Young Scientist Award nomination reflects his growing influence in the field, recognizing his ability to combine theoretical rigor with practical problem-solving. This honor underscores his potential as a next-generation leader in electrical engineering research.

Publications

Dr. Guanyue Sun has authored several influential publications in high-impact international journals, each contributing to the advancement of electrical engineering and materials science. His works include:

  • Tittle: Influences of storage pool on strain and mechanical uniformity of Mg-Gd-Y-Zn-Zr sheet produced by rotary forward extrusion
    Published on: 2025

  • Tittle: Effect of laminate channel width on the performance of MgAl-layered double hydroxide film-based nanogenerators driven by water evaporation
    Published on: 2025

  • Tittle: Study of the Effect of Ca on the Electrical Properties of SnO2 Varistor Based on the Voronoi Model
    Published on: 2024

  • Tittle: Simulation on paraffin melting enhancement in shell-tube phase change thermal storage equipment induced by natural convection
    Published on: 2024

  • Tittle: Numerical modeling and simulation of the flow drill screw process for joining A365 and A6N01 multi-material joints
    Published on: 2023

  • Tittle: Liquid phase sintering of SnO2 varistors for stability improvement
    Published on: 2023

  • Tittle: Improving Stability and Low Leakage Current of ZnO Varistors Ceramics
    Published on: 2023

Conclusion

Through his research, teaching, patents, and active engagement in professional societies, Dr. Guanyue Sun has established himself as a forward-looking scholar with a deep commitment to advancing electrical engineering. His work contributes to both academic knowledge and industrial application, addressing pressing challenges in power grid reliability, material stability, and high-voltage system safety. His nomination for the Young Scientist Award is a testament to his achievements, his innovative spirit, and his potential to make lasting contributions to global energy and engineering solutions.

Zhen Zhang | Chemistry and Materials Science | Best Researcher Award

Prof. Dr. Zhen Zhang | Chemistry and Materials Science | Best Researcher Award

Northwestern Polytechnical University | China

Dr. Zhen Zhang is a distinguished Professor and Doctoral Supervisor at the School of Materials Science and Engineering, Northwestern Polytechnical University. He earned his Ph.D. from the University of Waterloo, Canada, and subsequently held roles as a Postdoctoral Fellow and Senior Researcher at the same institution. Recognized as a Shaanxi Province High-Level Talent, Young Talent of Xi’an Association for Science and Technology, and Aoxiang Overseas Scholar, Prof. Zhang is a leading researcher in the field of energy electrocatalysis, with more than 5,500 citations, 14 ESI highly cited papers, and an H-index of 38.

Professional profile👤

Google Scholar

ORCID

Strengths for the Awards✨

Prof. Zhen Zhang exemplifies excellence in materials science and energy electrocatalysis. With a Ph.D. from the University of Waterloo and a robust academic trajectory, he has made pioneering contributions to confined electrocatalytic materials. His exceptional research productivity—over 50 SCI-indexed publications, including in top-tier journals like JACS, Advanced Materials, and Angewandte Chemie—alongside 14 ESI Highly Cited Papers, H-index of 38, and 5,500+ citations, clearly demonstrate profound scientific influence. His leadership in 16 competitive research projects, including national and industrial collaborations, speaks to both his technical depth and applied impact. Furthermore, his involvement in prestigious international collaborations and multiple editorial roles solidify his standing as a thought leader in his field.

🎓 Education

Prof. Zhang pursued his doctoral studies at the University of Waterloo, Canada, where he specialized in electrocatalytic materials and energy systems. His academic foundation laid the groundwork for innovative research in CO₂ reduction, hydrogen production, and advanced battery technologies. His global educational exposure significantly enhances his scientific perspective.

🧪 Experience

Prof. Zhang has a rich and varied research background, including appointments as a Postdoctoral Fellow and Senior Researcher at the University of Waterloo before returning to China. He now serves as a full Professor at Northwestern Polytechnical University, where he leads multiple national and provincial-level research initiatives. His industrial consultancy includes a 30 million RMB project on fuel cell power generation.

🔬 Research Interests On Chemistry and Materials Science

Prof. Zhang’s research centers on energy electrocatalytic materials and devices, especially focusing on CO₂ reduction reactions (CO₂RR), oxygen/hydrogen evolution and reduction reactions (OER/ORR, HER/HOR). His work facilitates the development of fuel cells, electrolyzers, and metal-air batteries for sustainable energy production ⚡. His innovations in confined electrocatalytic systems are advancing next-generation energy devices.

🏆 Awards

Prof. Zhang has received numerous prestigious honors, including the Advanced Materials Award from the International Association of Advanced Materials, Canadian Mitacs Accelerate Award, and the Chinese Government Award for Outstanding Self-Financed Students Abroad. He is also a Fellow of the Chinese Chemical Society and Chinese Materials Research Society. These accolades underscore his contributions to materials science and global energy sustainability 🌟.

📚 Publications

  • Microporous framework membranes for precise molecule/ion separations
    H. Dou, M. Xu, B. Wang, Z. Zhang, G. Wen, Y. Zheng, D. Luo, L. Zhao, A. Yu, …
    Year: 2021 | Citations: 285

  • Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries
    D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, …
    Year: 2021 | Citations: 279

  • Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO₂
    J. Zhu, M. Xiao, D. Ren, R. Gao, X. Liu, Z. Zhang, D. Luo, W. Xing, D. Su, A. Yu, …
    Year: 2022 | Citations: 244

  • Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb₂O₅–x nanocluster toward superior Li–S performance
    D. Luo#, Z. Zhang# (co-first author), G. Li, S. Cheng, S. Li, J. Li, R. Gao, M. Li, …
    Year: 2020 | Citations: 237

  • Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries
    Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang, X. Gong, X. Sui, A. Yu, L. Zhao, …
    Year: 2020 | Citations: 218

  • Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium–sulfur batteries
    D. Luo, G. Li, Y.P. Deng, Z. Zhang, J. Li, R. Liang, M. Li, Y. Jiang, W. Zhang, …
    Year: 2019 | Citations: 216

  • Rational design of tailored porous carbon-based materials for CO₂ capture
    Z. Zhang, Z.P. Cano, D. Luo, H. Dou, A. Yu, Z. Chen
    Year: 2019 | Citations: 213

  • Regulation of outer solvation shell toward superior low‐temperature aqueous zinc‐ion batteries
    Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng, T. Or, L. Yang, Q. Li, Q. Cu, R. Feng, …
    Year: 2022 | Citations: 212

  • “Two Ships in a Bottle” Design for Zn–Ag–O Catalyst Enabling Selective and Long-Lasting CO₂ Electroreduction
    Z. Zhang, G. Wen, D. Luo, B. Ren, Y. Zhu, R. Gao, H. Dou, G. Sun, M. Feng, …
    Year: 2021 | Citations: 200

  • Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO₂ electroreduction
    B. Ren, G. Wen, R. Gao, D. Luo, Z. Zhang, W. Qiu, Q. Ma, X. Wang, Y. Cui, …
    Year: 2022 | Citations: 191

✅ Conclusion

🌟 Prof. Zhen Zhang is a visionary in the field of energy electrocatalysis, combining scientific innovation with a strong record of international collaboration. His pioneering work on confined electrocatalytic materials addresses critical challenges in catalyst performance, contributing to cleaner and more efficient energy systems. With a strong academic foundation, over 5,500 citations, prestigious awards, and leadership in over 16 major projects, Prof. Zhang exemplifies excellence and innovation, making him a compelling candidate for the Best Researcher Award 🏅.

Dhiraj Kumar Rana | Materials | Best Researcher Award

Dr. Dhiraj Kumar Rana | Materials | Best Researcher Award

Postdoctoral Fellow | Indian Institute of Technology Delhi | India

Dr. Dhiraj Kumar Rana is a distinguished researcher in Materials Science and Polymer Engineering, currently serving as a National Post-Doctoral Fellow at the Department of Materials Science and Engineering, Indian Institute of Technology Delhi. His research primarily focuses on multiphase polymeric and elastomeric materials, functional smart materials, and their applications in energy storage, wearable electronics, and soft robotics. With a strong academic foundation and extensive research contributions, Dr. Rana has made significant advancements in flexible charge storage materials and elastomeric nanocomposites.

Profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Extensive Research Experience – With a career spanning over two decades in physical chemistry and photochemistry, Professor Yang has made significant contributions to the field.
  • Innovative Research in Phototherapy – His work on photochemical probes, nanotechnology for drug-controlled release, and phototherapy (both photodynamic and photothermal therapy) is impactful in medical and pharmaceutical sciences.
  • High Research Output – He has published 46 SCI-indexed research articles, with recent publications in top-tier journals like Biomaterials and Analytical Chemistry.
  • Funded Research Projects – Successfully secured grants, including the National Natural Science Foundation (21473101).
  • Intellectual Property Contributions – Holds four patents, demonstrating his focus on innovation and real-world applications.

Education 🎓

Dr. Rana obtained his B.Sc. in Physics (Honours) from North Orissa University, Baripada, in 2008, followed by an M.Sc. in Physics from NIT Rourkela in 2010. He further specialized in Advanced Materials Science and Technology with an M.Tech. from NIT Durgapur in 2013. His Ph.D., awarded by NIT Durgapur in 2019, focused on Experimental Condensed Matter Physics, emphasizing electrical and magnetic properties of polymer multiferroic nanocomposites.

Experience 🌍

Dr. Rana has held several research positions, including Junior Research Fellow at BIT Patna, Research Associate at NIT Durgapur, and Institute Post-Doctoral Fellow at IISER Mohali. Since 2022, he has been a National Post-Doctoral Fellow at IIT Delhi, contributing significantly to the development of novel polymeric materials for flexible electronics. His teaching experience includes courses in Engineering Physics and Advanced Physics at NIT Durgapur and Jharkhand Raksha Shakti University, Ranchi.

Research Interests On Materials🔬

Dr. Rana’s research encompasses a broad range of topics within Materials Science and Polymer Engineering. His expertise includes multiphase polymeric and elastomeric materials, dielectric and magnetic elastomers, flexible charge storage, nanomaterial synthesis (barium titanate, ferrite nanoparticles, graphene oxide, etc.), and applications in soft robotics and wearable electronics. He is proficient in advanced characterization techniques such as XRD, SEM, TEM, AFM, and various electrical, dielectric, and thermal analysis methods.

Awards 🏆

Dr. Rana has been recognized for his contributions to materials science through prestigious fellowships, including the SERB-National Post-Doctoral Fellowship. His research achievements have also earned him accolades in the field of advanced functional materials.

Publications 📚

  • Title: Electrical and room temperature multiferroic properties of polyvinylidene fluoride nanocomposites doped with nickel ferrite nanoparticles
    Authors: DK Rana, SK Singh, SK Kundu, S Roy, S Angappane, S Basu
    Publication Year: 2019
    Citations: 67

  • Title: Electrical and magnetic properties of polyvinyl alcohol–cobalt ferrite nanocomposite films
    Authors: DK Rana, SK Singh, SK Kundu, RJ Choudhary, S Basu
    Publication Year: 2018
    Citations: 34

  • Title: Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials
    Authors: PS Banerjee, DK Rana, SS Banerjee
    Publication Year: 2022
    Citations: 26

  • Title: Relaxor ferroelectric behavior of “A” site deficient Bismuth doped Barium Titanate ceramic
    Authors: T Badapanda, V Senthil, DK Rana, S Panigrahi, S Anwar
    Publication Year: 2012
    Citations: 25

  • Title: An easy synthesis of carbon-supported silver–cobalt bimetallic nanoparticles to study the electrocatalytic performance in alkaline borohydride fuel cell
    Authors: S Dey, S Pramanik, P Chakraborty, DK Rana, S Basu
    Publication Year: 2022
    Citations: 18

  • Title: Development of organic-inorganic flexible PVDF-LaFeO3 nanocomposites for the enhancement of electrical, ferroelectric and magnetic properties
    Authors: DK Rana, V Mehta, SK Kundu, S Basu
    Publication Year: 2020
    Citations: 18

  • Title: Enhanced multiferroic, magnetodielectric and electrical properties of Sm doped Lanthanum ferrite nanoparticles
    Authors: SK Kundu, DK Rana, L Karmakar, D Das, S Basu
    Publication Year: 2019
    Citations: 15

  • Title: Enhancement of electrical and magnetodielectric properties of BiFeO3 incorporated PVDF flexible nanocomposite films
    Authors: DK Rana, SK Kundu, RJ Choudhary, S Basu
    Publication Year: 2019
    Citations: 14

  • Title: Surfactant-free synthesis of carbon-supported silver (Ag/C) nanobars as an efficient electrocatalyst for alcohol tolerance and oxidation of sodium borohydride in alkaline medium
    Authors: S Dey, P Chakraborty, DK Rana, S Pramanik, S Basu
    Publication Year: 2021
    Citations: 13

  • Title: Influence of manganese on multiferroic and electrical properties of lanthanum ferrite nanoparticles
    Authors: SK Kundu, DK Rana, A Banerjee, D Das, S Basu
    Publication Year: 2019
    Citations: 7

Conclusion 📊

Dr. Dhiraj Kumar Rana is an accomplished scientist whose research has significantly contributed to the advancement of functional and smart materials. His expertise in polymeric nanocomposites and energy storage applications continues to drive innovation in flexible electronics and soft robotics. With an impressive publication record and ongoing research at IIT Delhi, Dr. Rana remains at the forefront of cutting-edge materials science research.