Naveen BP | Environmental and Sustainable Materials | Editorial Board Member

Prof. Dr. Naveen BP | Environmental and Sustainable Materials | Editorial Board Member

National Institute of Technical Teachers’ Training & Research | India

Dr. Naveen B. P. is a highly regarded researcher in Geotechnical Engineering, Foundation Engineering, and Geo-Environmental Engineering, with impactful contributions to municipal solid waste mechanics, landfill leachate characterization, and advanced geotechnical numerical modelling. His research systematically explores the physico-chemical, biological, and geotechnical behavior of municipal solid waste, contamination pathways, and the development of sustainable waste-management strategies for rapidly urbanizing regions. With a strong publication record spanning peer-reviewed journal articles, conference papers, book chapters, and technical reports, his scientific influence is reflected in 1415 Google Scholar citations, an h-index of 15, and an i10-index of 24 (with 1166 citations, h-index 13, and i10-index 19 since 2020). His widely cited works in high-impact journals such as Environmental Pollution, International Journal of Geo-Engineering, Measurement, and Energy Nexus address critical challenges including groundwater contamination caused by landfill leachate leakage, waste aging effects, dynamic behavior of landfilled materials, and innovative soil reinforcement using geotextiles. Dr. Naveen’s pioneering research has been referenced by governmental bodies for urban landfill rehabilitation and sustainable waste-management planning. He has also made notable contributions to advancing numerical simulation techniques, particularly through PLAXIS-based modelling of piles and landfill systems, supporting improved engineering design and environmental decision-making. His interdisciplinary approach integrates geotechnical engineering with environmental science, sustainable materials, and emerging technologies such as nanotechnology-based environmental treatments. Recognized with several prestigious research awards and international honours, he also contributes to the global research community as a journal reviewer for Elsevier, SAGE, Taylor & Francis, and Springer, and serves in editorial roles, including Chief Editor of an international journal in his field.

Profile: Google Scholar

Featured Publications

  • Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., & Sivapullaiah, P. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1–12.

  • Naveen, B. P., Sumalatha, J., & Malik, R. K. (2018). A study on contamination of ground and surface water bodies by leachate leakage from a landfill in Bangalore, India. International Journal of Geo-Engineering, 9(1), 27.

  • Ogwueleka, T. C., & Naveen, B. P. (2021). Activities of informal recycling sector in North-Central, Nigeria. Energy Nexus, 1, 100003.

  • Naveen, B. P., Sivapullaiah, P. V., & Sitharam, T. G. (2014). Characteristics of a municipal solid waste landfill leachate. In Proceedings of Indian Geotechnical Conference IGC (pp. 18–20).

  • Naveen, N. B., Sivapullaiah, P. V., & Sitharam, T. G. (2016). Effect of aging on the leachate characteristics from municipal solid waste landfill. Japanese Geotechnical Society Special Publication, 2(56), 1940–1945.

Jinbo Feng | Environmental and Sustainable Materials | Best Researcher Award

Mr. Jinbo Feng | Environmental and Sustainable Materials | Best Researcher Award

Shenzhen University | China

Mr. Jinbo Feng is a researcher in architecture at Shenzhen University, China, whose work focuses on sustainable building design, environmental comfort, and material innovation. His research integrates architectural theory with environmental technology, emphasizing thermal comfort optimization, self-insulating concrete development, solid waste recycling, and bionic design for marine ecological restoration. He has co-authored peer-reviewed studies, including the SCI Q2 article “Climate-Responsive Design for Sustainable Housing: Thermal Comfort, Spatial Configuration, and Environmental Satisfaction in Subtropical Void Decks” published in Buildings, and presented at the 16th International Conference on Environment-Behavior Studies (CEB-ASC) on residents’ perception of settlement spaces. His ongoing projects involve the thermal comfort study of overhead spaces in subtropical residential buildings, finite element modeling of thermal and mechanical behavior in insulating blocks, and bionic polymer reef design under the Shenzhen–Hong Kong Joint Funding Programme. Recognized with the Shenzhen University Special Award Scholarship and other academic honors, Feng demonstrates a strong commitment to advancing low-carbon, resource-efficient architectural solutions. His work contributes to bridging the gap between design aesthetics, engineering functionality, and environmental sustainability, promoting innovative strategies for climate-responsive architecture in rapidly urbanizing subtropical regions.

Profile: ORCID

Featured Publications

  • Feng, J., & [Mentor’s Name]. (2024). Climate-responsive design for sustainable housing: Thermal comfort, spatial configuration, and environmental satisfaction in subtropical void decks. Buildings. (SCI Q2).

  • Feng, J., & [Mentor’s Name]. (2024). A study of the correlation between the form of public space in settlements and the evaluation of residents’ perceptions. In Proceedings of the 16th International Conference on Environment-Behavior Studies (CEB-ASC), Nanjing University, China.

Spomenka Kobe | Environmental and Sustainable Materials | Distinguished Scientist Award

Prof. Dr. Spomenka Kobe | Environmental and Sustainable Materials | Distinguished Scientist Award

The Jožef Stefan Institute | Slovenia

Prof. Dr. Spomenka Kobe is a distinguished materials scientist and one of Europe’s leading experts in nanostructured materials, magnetic materials, and sustainable alloy design. Her pioneering research has advanced the scientific understanding and technological innovation in rare-earth magnet technology, nanostructured thin films, and magnetic materials recycling. She played a pivotal role in establishing rare-earth magnet research in Slovenia, leading major national and European research programs on critical raw materials and sustainable magnet production. Her Scopus-indexed research portfolio includes 169 publications, which have collectively received 2,350 citations from 1,949 documents, reflecting an h-index of 22. Her work spans critical areas of magnetism, solid-state physics, thin-film engineering, and microstructural analysis, significantly influencing global research directions in advanced materials science. Prof. Dr. Spomenka Kobe’s scientific leadership is exemplified through her coordination of the FP7 European Project ROMEO (Replacement and Original Magnet Engineering Option) and the International Associated Laboratory PACS2 (Push-Pull AlloyS and Complex Compounds) in collaboration with CNRS, France. She has also been a principal investigator on numerous EU and national R&D projects and an active contributor to international academic and industrial innovation networks. Her applied research achievements include seven patents (four European patents), three innovations, and multiple technology transfers to industrial production, showcasing her ability to translate advanced materials research into practical applications. She has authored several book chapters, delivered numerous invited lectures, and contributed to major international conferences on magnetic and nanostructured materials.

Profiles: Scopus | ResearchGate | LinkedIn

Featured Publications

• Schieren, L., Semsari Parapari, S., Tomše, T., Žužek, K., Šturm, S., Kobe, S., & Burkhardt, C. (2025). Evaluating citric acid as a selective leaching agent to extract Nd₂Fe₁₄B matrix phase from end-of-life magnets. Journal of Rare Earths, 43(7). https://doi.org/10.1016/j.jre.2025.04.020

• Grau, L., Moreno López, R., Kubelka, P., Burkhardt, F., Tomše, T., Kobe, S., & Burkhardt, C. (2024). Effects of thermal demagnetization in air on the microstructure and organic contamination of NdFeB magnets. Materials, 17(22), 5528. https://doi.org/10.3390/ma17225528

• Tomše, T., Burkhardt, F., Krasniqi, L., Ivekovič, A., Kocjan, A., Kobe, S., Podmiljšak, B., Burkhardt, C., Šturm, S., & Žužek Rožman, K. (2024, September). An alternative sintering strategy for anisotropic Nd–Fe–B magnet based on recycled content. International Materials Science and Engineering Congress (MSE 2024).

• Grau, L., Fleissner, P., Kobe, S., & Burkhardt, C. (2024). Processability and separability of commercial anti-corrosion coatings produced by in situ hydrogen-processing of magnetic scrap (HPMS) recycling of NdFeB. Materials, 17(11), 2487. https://doi.org/10.3390/ma17112487

• Tomše, T., Podmiljšak, B., Scherf, L. M., Kessler, R., Kobe, S., Kocjan, A., Šturm, S., & Žužek Rožman, K. (2024). Unravelling the intricacies of micro-nonuniform heating in field-assisted sintering of multiphase metallic microstructures. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2024.118405

Vahid Isazade | Environmental and Sustainable Materials | Best Paper Award

Dr. Vahid Isazade | Environmental and Sustainable Materials | Best Paper Award

University of Tehran | Iran

Dr. Vahid Isazade is an accomplished scholar in the fields of hydrology, meteorology, and geospatial sciences, widely recognized for his innovative contributions to remote sensing and GIS applications. With a strong academic foundation and a passion for solving real-world environmental challenges, he has developed impactful research that addresses critical issues such as water resource management, natural hazards, and sustainable urban planning. His scientific achievements, combined with his active role as a reviewer for international journals, highlight his dedication to advancing research and contributing to global knowledge exchange.

Professional Profile

Scopus

Google Scholar

ORCID

Education

He began his academic journey in hydrology and meteorology, achieving distinction as a top student at a leading national university. His outstanding performance and recognition as a brilliant talent enabled him to pursue graduate studies in remote sensing and GIS at a premier institution. His dissertation work explored the integration of spatial models, regression approaches, and machine learning for analyzing environmental and health-related phenomena, exemplifying his ability to combine theoretical and applied perspectives in research. His educational pathway has been marked by consistent excellence, innovation, and leadership in advancing the use of geospatial technologies.

Experience

Dr. Vahid Isazade has cultivated rich academic and professional experience through collaborative research projects, journal refereeing, and contributions to book translations on advanced topics in urban planning and environmental management. He has participated in high-impact projects supported by national and international organizations, focusing on sustainable development, disaster resilience, and innovative spatial data applications. His role as a referee for several respected journals demonstrates the trust placed in his expertise by the global academic community. Additionally, his experience as a lecturer and trainer has allowed him to guide graduate students and practitioners in applying GIS and remote sensing tools to practical challenges.

Research Interest

His research interests span a wide spectrum of contemporary environmental and geospatial sciences. He focuses on climate change monitoring, spatial data modeling, and environmental hazard assessment using advanced machine learning techniques. His work also explores the integration of remote sensing data with urban planning and public health applications, reflecting an interdisciplinary approach that bridges science, technology, and policy. By leveraging emerging technologies such as cloud computing platforms, spatial regression models, and GeoAI, he aims to create scalable solutions for global challenges in sustainability, disaster risk management, and environmental justice.

Awards

Throughout his academic and professional career, Dr. Vahid Isazade has been recognized with numerous prestigious awards and honors that reflect both his scholarly excellence and innovative ideas. He has been distinguished as a brilliant talent by elite academic foundations, awarded medals in national Olympiads, and honored as the best researcher in several renowned scientific festivals. His innovative contributions, including the development of novel approaches for water purification and advanced spatial data services, have also been celebrated at national scientific gatherings. These achievements reflect not only his technical expertise but also his ability to generate transformative ideas with practical and societal impact.

Publication

Dr. Vahid Isazade has an extensive record of publications in high-ranking international journals, contributing significantly to the advancement of environmental modeling, disaster risk assessment, and renewable energy planning. His influential papers include:

Title : Integration of Moran’s I, geographically weighted regression (GWR), and ordinary least square (OLS) models in spatiotemporal modeling of COVID-19 outbreak in Qom and Mazandaran
Journal: Modeling Earth Systems and Environment
Published on: 2023
Citation: 42

Title : Flood susceptibility prediction using MaxEnt and frequency ratio modeling for Kokcha River in Afghanistan
Journal: Natural Hazards
Published on: 2024
Citation: 27

Title : Landslide susceptibility mapping in Badakhshan province, Afghanistan: a comparative study of machine learning algorithms
Journal: Geocarto International
Published on: 2023
Citation: 23

Title : Advancement in navigation technologies and their potential for the visually impaired: a comprehensive review
Journal: Spatial Information Research
Published on: 2023
Citation: 22

Title : Spatiotemporal and multi-sensor analysis of surface temperature, NDVI, and precipitation using Google Earth Engine cloud computing platform
Journal: Russian Journal of Earth Sciences
Published on: 2022
Citation: 18

Title : Investigation of the effects of salt dust caused by drying of Urmia Lake on the sustainability of urban environments
Journal: Journal of Clean WAS
Published on: 2021
Citation: 16

Title : Spatio-temporal analysis of the COVID-19 pandemic in Iran
Journal: Spatial Information Research
Published on: 2023
Citation: 11

Conclusion

Dr. Vahid Isazade represents the new generation of researchers who combine academic rigor with practical innovation. His outstanding academic achievements, impactful publications, and commitment to applying geospatial technologies to real-world challenges make him an exemplary candidate for the Best Paper Award. His interdisciplinary approach, which integrates hydrology, meteorology, GIS, remote sensing, and data science, reflects a vision for research that is both globally relevant and locally impactful. His contributions embody excellence, creativity, and a deep commitment to advancing sustainable solutions for the future.

Qingxia Chen | Chemistry and Materials Science | Best Researcher Award

Dr. Qingxia Chen | Chemistry and Materials Science | Best Researcher Award

Jiangnan university | China

Dr. Qingxia Chen currently serves as an Associate Professor at the School of Chemical Engineering and Materials Science, Jiangnan University. With a strong background in inorganic chemistry and nanomaterials, she has steadily built a reputation as a leading young researcher in the field of advanced material design. Her research contributions—marked by innovation, interdisciplinary collaboration, and impactful publications—have earned her numerous recognitions and competitive grants.

Professional profile👤

Scopus

Strengths for the Awards✨

Dr. Qingxia Chen demonstrates a remarkable trajectory in the field of chemical engineering and inorganic chemistry. With a Ph.D. from the University of Science and Technology of China and current service as an Associate Professor at Jiangnan University, her academic foundation is both prestigious and robust. She has participated in and hosted several significant national and international research projects, including high-profile programs funded by the National Natural Science Foundation of China and the Ministry of Science and Technology.

Her research portfolio is exceptional, reflecting a strong focus on nanomaterials, electrocatalysis, and structural design. Notably, she has co-authored several high-impact papers in top-tier journals such as Journal of the American Chemical Society (JACS) and Nature Communications. Her contributions as co-first and co-corresponding author highlight leadership and innovation in collaborative research.

🎓 Education

Dr. Chen began her academic journey with a Bachelor of Science in Chemical Engineering and Technology from Hefei University of Technology (2010–2014). She pursued her Ph.D. in Inorganic Chemistry at the University of Science and Technology of China (2014–2019), where she focused on the synthesis and engineering of nanostructured materials.

🧑‍🔬 Experience

Following her doctoral studies, Dr. Chen conducted postdoctoral research at the University of Science and Technology of China from November 2019 to August 2022. She then joined Jiangnan University as an Associate Professor, where she continues to lead innovative research in nanomaterials, catalysis, and electrochemistry. Her collaborative work spans national and international institutions and has resulted in impactful technological advancements.

🔬 Research Interests On Chemistry and Materials Science

Dr. Chen’s research interests center around the design, assembly, and application of nanomaterials, particularly in electrocatalysis, energy conversion, and microstructural engineering. Her current focus includes the development of ordered nanostructures and chiral nanomagnetic materials, with particular emphasis on their electrochemical and catalytic behavior under confined conditions. Her innovative approach merges synthetic chemistry with physical characterization techniques such as synchrotron radiation.

🏆 Awards

Dr. Chen’s excellence has been recognized with several prestigious awards:

  • Postdoctoral Innovation Talent Support Program (2020), awarded by the China Postdoctoral Science Foundation

  • Special Research Assistant Support Program (2020), Chinese Academy of Sciences

  • Mozi Outstanding Youth Special Allowance (2020), University of Science and Technology of China
    These honors reflect her leadership potential and the significant promise of her research contributions.

📚 Publications

Dr. Qingxia Chen has co-authored several high-impact publications in leading journals. Below are selected works:

  1. Ordered Nanostructure Enhances Electrocatalytic Performance by Directional Micro-Electric Field, J. Am. Chem. Soc., 2019, 141(27), 10729–10735. Cited by 350+ articles.

  2. Microchemical Engineering in a 3D Ordered Channel Enhances Electrocatalysis, J. Am. Chem. Soc., 2021, 143(32), 12600–12608. Cited by 120+ articles.

  3. Stress-Induced Ordering Evolution of 1D Segmented Heteronanostructures and Their Chemical Post-Transformations, Nat. Commun., 2024, 15(1): 3208. Cited by 10+ articles.

  4. Regulated Photocatalytic CO₂-to-CH₃OH Pathway by Synergetic Dual Active Sites of Interlayer, J. Am. Chem. Soc., 2024, 146(38), 26478–26484. Cited by 5+ articles.

  5. Confined CO in a Sandwich Structure Promotes C-C Coupling in Electrocatalytic CO₂ Reduction, Mater. Horiz., 2024, 11(17), 4183–4189. Cited by 3+ articles.

✅ Conclusion

Dr. Qingxia Chen stands as a dynamic and promising researcher whose contributions in nanomaterials and electrocatalysis are already shaping the field. Her role as a co-first and co-corresponding author in several top-tier journals underscores her scientific leadership. With a blend of academic rigor, innovation, and recognized achievements, she is an outstanding candidate for the Best Researcher Award. Her journey is not only inspiring but also indicative of a sustained and growing impact in chemical science.

Jiten Yadav | Material Science | Best Researcher Award

Dr. Jiten Yadav | Material Science | Best Researcher Award

Chandiagrh University, Punjab | India

Dr. Jiten Yadav is an accomplished materials research scientist specializing in nanomaterials, polymer materials, hybrid composites, biomass, biofuels, wastewater treatment, and advanced material characterization. With a Ph.D. in Materials Chemistry and over five years of interdisciplinary research experience, she has significantly contributed to the fields of sustainable chemistry, nanotechnology, renewable energy, and environmental remediation. She is recognized for her ability to integrate advanced nanoscience with real-world industrial applications, leading multidisciplinary projects, securing research grants, and publishing extensively in high-impact journals. Her work is characterized by innovative problem-solving, ethical research practices, and leadership in collaborative scientific endeavors.

Professional profile

Google Scholar

Scopus

Education

Dr. Yadav holds a Doctor of Philosophy in Chemistry from Chandigarh University, where her doctoral research focused on the synthesis and functionalization of advanced nanomaterials, including ceramics, MXenes, and mixed metal oxides, for environmental, biomedical, and energy applications. She earned her Master of Science in Chemistry from Chandigarh University, specializing in heterogeneous catalysis for biodiesel production, impurity profiling in pharmaceuticals, and biomass-based energy solutions. She completed her Bachelor of Science in Life Sciences from Maharishi Dayanand University, building a strong foundation in multidisciplinary scientific principles that underpin her research today.

Experience

Currently serving as an Assistant Professor at the University Centre of Research and Development, Chandigarh University, Dr. Yadav leads advanced research projects in nanoscience, renewable energy, and sustainable environmental technologies. She mentors undergraduate, postgraduate, and doctoral students, guiding research projects from conception to publication. Her experience spans industrial collaborations, academic partnerships, and technology transfer initiatives. She has previously conducted extensive research on functionalized nanomaterials for pollutant removal, biofuel production, and catalytic applications, and has hands-on expertise in sophisticated analytical instrumentation such as FESEM, HR-TEM, XRD, FTIR, and photoluminescence spectroscopy. Her professional background also includes industrial training with pharmaceutical and chemical companies, enhancing her applied research capabilities.

Research Interest

Dr. Yadav’s research focuses on the design, synthesis, and characterization of nanomaterials, metal oxides, polymers, biosensors, catalysts, hybrid nanocomposites, biomass, biofuels, and two-dimensional materials. Her work has applications in energy conversion, wastewater treatment, waste management, environmental remediation, and photocatalysis. She is deeply invested in sustainable chemistry solutions that integrate material science with industrial-scale applications, aiming to address pressing global challenges in energy, environmental protection, and public health through innovative nanotechnology.

Awards

Dr. Yadav has been recognized with multiple best poster and oral presentation awards at national and international conferences for her innovative contributions to nanomaterials research. As a Board of Studies Member at Chandigarh University, she contributes to academic excellence across multiple departments, influencing curriculum development and research policy. Her patents on portable water filtration apparatus and automatic ceiling fan cleaning devices demonstrate her commitment to practical, sustainable innovations. These achievements reflect her status as a leading early-career researcher in materials chemistry and sustainable nanotechnology.

Publications

Title: Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights
Journal: Current Pharmaceutical Design 29 (43), 3442–3457
Published on: 2023
Citation: 19

Title: Malachite green dye purification from effluent using synthesized ceramic clay: Characterisation; optimization and scale up
Journal: Ceramics International 49 (15), 24831–24851
Published on: 2023
Citation: 18

Title: Dye removal of cationic dye from aqueous solution through acid functionalized ceramic
Journal: Total Environment Research Themes 6, 100038
Published on: 2023
Citation: 15

Title: A review: on malachite green; synthesis, uses and toxic effects
Journal: Symposium on Synthesis, Characterization & Processing of Inorganic, Bio and …
Published on: 2023
Citation: 14

Title: Bioadsorption of dye from textile effluent with surface response methodology
Journal: Materials Today: Proceedings 68, 937–942
Published on: 2022
Citation: 6

Title: Optimizing malachite green dye removal with nano-silica clay in fixed-bed reactors
Journal: Journal of Nanoparticle Research 26 (9), 212
Published on: 2024
Citation: 3

Title: A Review on Biodiesel Production
Journal: International Journal of Analytical and Applied Chemistry 7 (1), 26–39
Published on: 2021
Citation: 2

Title: Investigation of nanoscale surface roughness, fractal growth, optical constant and dispersion parameters of rf-sputtered CdS thin films for high-performance metal–semiconductor …
Journal: Optical and Quantum Electronics 57 (6), 331
Published on: 2025
Citation: 1

Conclusion

Dr. Jiten Yadav is a dynamic and innovative materials scientist whose research bridges the gap between advanced nanomaterials and sustainable real-world applications. Her work has advanced environmental remediation technologies, developed efficient biofuel production methods, and enhanced pollutant removal strategies through material innovation. With a proven track record in high-impact publications, patents, and collaborative projects, she exemplifies the qualities of a leading researcher dedicated to creating solutions for a sustainable future. Her interdisciplinary expertise, leadership, and commitment to ethical, impactful science make her an outstanding candidate for the Best Researcher Award.

Xiao-Wu Lei | Materials | Best Researcher Award

Prof. Xiao-Wu Lei | Materials | Best Researcher Award

Jining University | China

Dr. Xiao-Wu Lei is a distinguished Associate Professor in the Department of Chemistry and Chemical Engineering at Jining University, China. Born on January 8, 1984, in PingYao, Shanxi Province, Dr. Lei has built a strong academic and research foundation in the field of inorganic functional materials. With a vibrant passion for cutting-edge research and an impressive portfolio of high-impact publications, he is recognized as a leading scientist in the synthesis and application of novel hybrid materials, intermetallic compounds, and photoluminescent systems.

Professional profile👤

Scopus

Strengths for the Awards✨

  • Exceptional Publication Record
    Dr. Xiao-Wu Lei has published extensively in high-impact journals such as Angewandte Chemie International Edition, Advanced Science, Chemical Science, ACS Applied Materials & Interfaces, Advanced Optical Materials, and Chemical Engineering Journal. His research spans over 20 high-profile papers within the last 5 years, signifying a high level of sustained productivity and relevance.

  • Research Focus on Cutting-edge Materials
    His work focuses on polar intermetallics, metal chalcogenometalates, hybrid metal halides, and metal–organic frameworks. These areas are central to advances in photocatalysis, scintillation, solar energy, and optoelectronic devices, making his research extremely pertinent to current global technological needs.

  • Expertise and Versatility
    Dr. Lei demonstrates mastery over both experimental and computational techniques—ranging from solid-state synthesis and solvothermal methods to X-ray crystallography and electronic structure calculations. His skillset includes the use of complex software like WIEN2K, CASTEP, and SHELXTL.

  • Strong International Impact
    He has multiple collaborative publications with global visibility, often co-authoring with internationally recognized scholars. His recent works in fluorescence sensing, X-ray scintillators, and lead-free perovskites are aligned with green and sustainable material development, highlighting both scientific depth and environmental relevance.

🎓 Education

Dr. Lei received his Bachelor of Science in Chemistry from Jilin University (2000–2004), one of China’s most prestigious institutions. He pursued his Ph.D. in Inorganic Chemistry at the Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (2004–2010), under the guidance of Prof. Jiang-Gao Mao, an editor of Journal of Solid State Chemistry. His academic background provided him with a robust foundation in solid-state synthesis and materials characterization.

👨‍🏫 Experience

Since August 2010, Dr. Lei has served as an Associate Professor at Jining University, where he has contributed extensively to both teaching and research. With over a decade of academic service, he has supervised student research projects and led numerous experimental investigations in functional materials. His technical skills include advanced characterization techniques (XRD, IR, UV-Vis, TGA, SC-XRD), and computational modeling (WIEN2K, CASTEP, etc.), making him a multifaceted researcher.

🔍 Research Interests On Materials

Dr. Lei’s research revolves around inorganic functional materials, with a focus on:

  • Polar intermetallics and Zintl phases for thermoelectric and superconducting applications.

  • Metal chalcogenometalates with properties suited for photocatalysis, magnetism, and optics.

  • Hybrid metal halides for solar cells and X-ray scintillators.

  •  Further interests: microporous materials, metal–organic frameworks (MOFs), and luminescent materials. His work blends theoretical modeling and experimental synthesis, contributing to next-generation optoelectronic technologies.

🏆 Awards & Recognition

Dr. Lei is a strong nominee for the Research Excellence Award for Emerging Scientists at Jining University due to his exceptional contributions in developing advanced luminescent and hybrid materials. His research is regularly published in top-tier international journals, including Angewandte Chemie, Advanced Science, Chemical Science, and ACS Applied Materials & Interfaces, demonstrating both innovation and international relevance. 🏅📈

📚 Publications

1. Hybrid metal halide family with color-time-dual-resolved phosphorescence for multiplexed information security applications

  • Authors: Liu, Yuhang; Yan, Tianyu; Dong, Menghan; … Kong, Xiangwen; Lei, Xiaowu

  • Year: 2025

  • Citations: 3

2. Zero-dimensional cadmium halide with broad band yellow light emission for white light-emitting diodes

  • Authors: Lin, Na; Hu, Zhao Yang; Zhang, Xinyue; … Jing, Zhihong; Chen, Zhiwei

  • Year: 2025

  • Citations: 0

3. Synthesis and stability of one-dimensional red-emitting manganese-based Organic–inorganic halide

  • Authors: Wang, Danyang; Wang, Shanxiao; Tian, Chaoyang; … Lei, Xiaowu; Yu, Fang

  • Year: 2025

  • Citations: 1

4. In Situ Halide Vacancy Tuning of Low-Dimensional Lead Perovskites to Realize Multiple Adjustable Luminescence Performance

  • Authors: Sun, Chen; Jing, Changqing; Li, Dongyang; … Fei, Honghan; Lei, Xiaowu

  • Year: 2025

  • Citations: 0

5. Synchronously Improved Multiple Afterglow and Phosphorescence Efficiencies in 0D Hybrid Zinc Halides With Ultrahigh Anti-Water Stabilities

  • Authors: Zhao, Jianqiang; Wang, Danyang; Yan, Tianyu; … Yan, Dongpeng; Lei, Xiaowu

  • Year: 2024

  • Citations: 17

6. Zero-dimensional organic-inorganic hybrid zinc halide with stable broadband blue light emissions

  • Authors: Zhang, Jie; Ma, Yu Xin; Wu, Ming; … He, Yuanchun; Lei, Xiaowu

  • Year: 2024

  • Citations: 0

7. Zero-dimensional cuprous halide scintillator with ultra-high anti-water stability for X-ray imaging

  • Authors: Lv, Jingning; Lin, Na; Zhang, Jiayi; … Lei, Xiaowu; Chen, Zhiwei

  • Year: 2024

  • Citations: 1

8. Zero-dimensional organic-inorganic hybrid indium halide perovskite with broadband yellow light emission

  • Authors: Wang, Qi; Jiang, Wei; Xuan, Pengyao; … Yue, Chengyang; Kong, Xiangwen

  • Year: 2024

  • Citations: 0

9. Near-unity broadband emissive hybrid manganese bromides as highly-efficient radiation scintillators

  • Authors: Gong, Zhongliang; Zhang, Jie; Deng, Xiangyuan; … He, Yuanchun; Lei, Xiaowu

  • Year: 2024

  • Citations: 8

10. One-Dimensional Red Light-Emissive Organic Manganese(II) Halides as X-Ray Scintillators

  • Authors: Yu, Fang; Zhang, Huiru; Gao, Wenwen; … Kong, Xiangwen; Yue, Chengyang

  • Year: 2024

  • Citations: 3

✅ Conclusion

Dr. Xiao-Wu Lei exemplifies academic excellence and innovative research. His interdisciplinary work in inorganic chemistry and material sciences, combined with a consistent publication record in top journals, positions him as a valuable contributor to global scientific advancement. With profound expertise in hybrid materials and luminescent technologies, he is an outstanding candidate for the Research Award Nomination by the Department of Chemistry and Chemical Engineering, Jining University.

Panagiotis Regkouzas | Materials | Best Researcher Award

Dr. Panagiotis Regkouzas | Materials | Best Researcher Award

Technical University of Crete | Greece

Dr. Panagiotis Regkouzas is a passionate environmental engineer from Chania, Greece, born on November 21, 1991. With a robust academic and professional foundation, he is currently a postdoctoral researcher at the Technical University of Crete. His career is defined by his dedication to sustainable development, specializing in biochar production, wastewater treatment, and the circular economy. Through national and international collaborations, Panagiotis contributes to innovative environmental engineering solutions that promote resource recovery and sustainable agriculture.

Professional profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Strong Academic Background:

    • PhD in Environmental Engineering with a specialization in biochar production, environmental applications, and wastewater treatment.

    • Dual master’s degrees with focused theses on biochar and wastewater reuse, directly supporting the sustainability and circular economy sectors.

  • Research Productivity & Impact:

    • Author/co-author of several peer-reviewed articles in reputed international journals such as Chemosphere, Environmental Science and Pollution Research, and Biomass Conversion and Biorefinery.

    • Published cutting-edge work on nanobiochar, graphene oxide biochars, and CNT-doped composites, showing innovation and depth in environmental nanotechnology.

  • Active Participation in High-Profile Projects:

    • Involved in European Union-funded projects like Horizon 2020 (PRIMA) and Marie Skłodowska-Curie Actions, indicating his role in top-tier international collaborations.

    • Project themes align with global environmental priorities such as circular economy, green technologies, and nature-based solutions.

  • Extensive Conference Participation & Visibility:

    • Regular presenter at international conferences (EGU, IEES, IWA, EURECA-PRO), reflecting academic leadership and scientific communication strength.

    • Frequent contributions in sessions on circular economy, wastewater valorization, and biochar technologies, underlining topic consistency and relevance.

🎓 Education

Panagiotis began his academic journey with a Master of Engineering (MEng) in Environmental Engineering at the Technical University of Crete (2009–2015), where he explored biochar applications for pollutant adsorption. He then pursued a Master of Science (MSc) in Advanced Water and Wastewater Treatment (2015–2017), focusing on valorizing municipal solid waste. His PhD (2017–2024) further delved into advanced biochar materials and their applications in removing emerging contaminants from water. Currently, he continues his research as a postdoctoral scholar in Circular Economy at the same institution.

🧪 Experience

With over 7 years of research and teaching experience at the Technical University of Crete, Panagiotis has worked on diverse projects ranging from biochar production and nanomaterials to wastewater treatment technologies. His roles include university research and teaching assistant, as well as laboratory assistant in courses on water treatment and environmental engineering. In 2024, he expanded his international experience as an Engineering Research Scientist at APS-Ekoinnowacje in Poland, emphasizing sustainable waste management and environmental innovation.

🔬 Research Interests On Materials

Panagiotis’s research interests lie in environmental sustainability with a sharp focus on circular economy principles. He is particularly interested in:

  • Biochar production from waste biomass

  • Adsorption of emerging micro-contaminants

  • Development of nanocomposite biochars

  • Wastewater and sludge treatment

  • Nature-based solutions like constructed wetlands
    His work bridges the gap between environmental engineering and practical, sustainable applications for agriculture and water systems.

🏆 Awards & Nominations

1. Title: Adsorption of selected organic micro-pollutants on sewage sludge biochar
Authors: P. Regkouzas, E. Diamadopoulos
Year: 2019
Citations: 158

2. Title: Ni (II) adsorption on biochars produced from different types of biomass
Authors: R.N. Mourgela, P. Regkouzas, F.M. Pellera, E. Diamadopoulos
Year: 2020
Citations: 14

3. Title: Biochar production from waste biomass: Characterization and evaluation for agronomic and environmental applications
Authors: F.M. Pellera, P. Regkouzas, I. Manolikaki, E. Diamadopoulos
Year: 2021
Citations: 12

4. Title: Production and characterization of graphene oxide-engineered biochars and application for organic micro-pollutant adsorption from aqueous solutions
Authors: P. Regkouzas, L. Sygellou, E. Diamadopoulos
Year: 2023
Citations: 10

5. Title: Effect of compost and compost-derived biochar on the growth of lettuce irrigated with water and treated wastewater
Authors: P. Regkouzas, N. Katie, K. Bontiotis, A. Stefanakis
Year: 2025
Citations: Not listed

6. Title: Assessing Biochar and Compost from the Organic Fraction of Municipal Solid Waste on Nutrient Availability and Plant Growth of Lettuce in a Pot Experiment
Authors: P. Regkouzas, I. Manolikaki, E. Diamadopoulos
Year: 2025
Citations: Not listed

7. Title: Effect of compost and compost-derived biochar on lettuce growth in a water and wastewater irrigated pot experiment
Authors: P. Regkouzas, N. Katie, K. Bontiotis, A. Stefanakis
Year: 2025
Citations: Not listed

8. Title: The role of biochar in a circular economy: from agriculture to water and wastewater treatment applications
Authors: P. Regkouzas, I. Asimakoulas, E. Athanasiadou, E. Koukouraki, …
Year: 2024
Citations: Not listed

9. Title: Production of advanced adsorptive materials based on biochar
Author: P. Regkouzas
Year: 2024
Citations: Not listed

10. Title: Global Challenges for a Sustainable Society: EURECA-PRO
Authors: P. Regkouzas, E. Diamadopoulos
Year: 2023
Citations: Not listed

✅ Conclusion

Panagiotis Regkouzas exemplifies the spirit of environmental innovation and sustainable engineering. With a solid foundation in education, a breadth of interdisciplinary experience, and a forward-looking research portfolio, he is a valuable asset to the scientific community and an outstanding nominee for this award. His work paves the way for greener technologies in water treatment, agriculture, and waste valorization, making impactful contributions both locally and globally 🌎🌿.

Tengfei Cheng | Materials | Best Researcher Award

Mr. Tengfei Cheng | Materials | Best Researcher Award

Hefei General Machinery Research Institute Co., Ltd | China

Tengfei Cheng is a dedicated engineer and researcher specializing in materials science and engineering. With a strong academic background and extensive experience in research and development, he has contributed significantly to the fields of hydrogen storage materials, electrochemical energy storage, and corrosion-resistant alloys. Currently, he is serving as an engineer at the Hefei General Machinery Research Institute, focusing on pressure vessel and pipeline technology.

Professional profile👤

ORCID

Scopus

Strengths for the Awards✨

  1. Extensive Research Contributions: Tengfei Cheng has published numerous high-impact journal articles across various reputable journals, including Angewandte Chemie International Edition, ACS Applied Materials & Interfaces, and Industrial & Engineering Chemistry Research.
  2. Diverse Research Areas: His work spans multiple crucial areas, including lithium-ion and lithium-sulfur batteries, hydrogen storage materials, and aluminum alloys, showcasing his versatility and expertise in materials science and engineering.
  3. Notable Research Funding: He has secured multiple research grants, including projects on hydrogen storage systems and high-entropy alloys, indicating recognition of his work by funding agencies.
  4. Strong Academic Background: With both a Bachelor’s and Master’s degree in Materials Science and Engineering from Shanghai University, he has a solid educational foundation that supports his research excellence.
  5. Industry and Academic Experience: His employment at Hefei General Machinery Research Institute and Yunnan Innovation Institute of Beijing University of Aeronautics and Astronautics reflects his contributions to both industrial applications and academic research.

Education 🎓

Tengfei Cheng holds both a Master’s and a Bachelor’s degree in Materials Science and Engineering from Shanghai University. His academic journey began in 2014 with undergraduate studies, followed by a master’s degree completed in 2021. His research during this period laid the foundation for his expertise in advanced materials and their applications in energy storage and structural integrity.

Professional Experience 💼

Cheng has accumulated valuable experience in engineering and research. He started as an assistant engineer at the New Materials Research Center of Yunnan Innovation Institute, Beijing University of Aeronautics and Astronautics, before moving to his current role at Hefei General Machinery Research Institute. His work primarily revolves around the development of high-performance materials for industrial applications, with a focus on safety assessments and material durability.

Research Interests On Materials 🔬

Cheng’s research interests span several cutting-edge areas in materials science, including:

  • Hydrogen storage materials and high-entropy alloys
  • Electrochemical energy storage, including lithium-sulfur and sodium-ion batteries
  • Corrosion-resistant alloys and mechanical properties of aluminum-based materials
  • Advanced material processing techniques, such as high-pressure torsion and molecular dynamics simulations

Awards & Funding 🏆

Tengfei Cheng has been recognized for his contributions through various research grants and funding programs:

  • China National Machinery Industry Corporation Grant (2024-2027): Design and Safety Assessment Technology of High-Density Adaptive Solid-State Hydrogen Storage System.
  • Hefei General Machinery Research Institute Grant (2023-2025): Research on Uniformization Preparation and Hydrogen Storage Properties of Titanium-Based High-Entropy Alloys.

Publications 📚

Cheng has authored numerous research papers in prestigious journals. Some of his key publications include:

  • “Enhanced Lithium Polysulfide Conversion via the Second Current Collector Based on Multitransition-Metal-Phosphides for Li–S Batteries”

    • Authors: Liqing He, Kaiquan He, Tengfei Cheng, Wanggang Fang, Chaoqun Shang

    • Publication Year: 2025

  • “Thiol-assisted regulated electronic structure of ultrafine Pd-based catalyst for superior formic acid electrooxidation performances”

    • Authors: Yanling Hu, Jianding Li, Qianqian Wang, Xueqing Yu, Yao Kang, Tengfei Cheng, Liqing He, Linfeng Zhang

    • Publication Year: 2025

  • “Topological Insulator Heterojunction with Electric Dipole Domain to Boost Polysulfide Conversion in Lithium‐Sulfur Batteries”

    • Authors: Hedong Chen, Yecheng Qiu, Zhiyuan Cai, Wenhao Liang, Lin Liu, Manman Li, Xianhua Hou, Fuming Chen, Xunzhu Zhou, Tengfei Cheng, et al.

    • Publication Year: 2025

  • “Functionalized Polyethylene Separators with Efficient Li-Ion Transport Rate for Fast-Charging Li-Ion Batteries”

    • Authors: Ning Dang, Jiarong Mao, Yuqiong Mao, Wenjun Yi, Dan Li, Tengfei Cheng, Liqing He, Jinni Deng, Zhengping Zhao, Tianbao Zhao, et al.

    • Publication Year: 2025

  • “Study on the Microstructure and Mechanical Properties of Al–Cu–Mg Aluminum Alloy Based on Molecular Dynamics Simulation”

    • Authors: Jing Huang, Tengfei Cheng, Wanggang Fang, Xinghai Ren, Xiangqun Duan, Zhigong Xu, Shulin Xiang

    • Publication Year: 2024

  • “Effects of the corrosion mechanism evolution of low silicon-cast aluminium alloys in service”

    • Authors: Tengfei Cheng, Guoqing Zou, Xiaoyan Mao, Yuxiang Yang

    • Publication Year: 2023

  • “Electrolyte precursor–free approach to prepare composite electrolyte for all-solid-state Na-ion battery”

    • Authors: Liqing He, Zhen Wang, Yuxiang Li, Heng Lin, Jianjun Li, Tengfei Cheng, Qiang Zhu, Chaoqun Shang, Zonghai Lu, Ricardo Floriano, et al.

    • Publication Year: 2023

  • “Severe Plastic Deformation through High-Pressure Torsion for Preparation of Hydrogen Storage Materials – A Review”

    • Authors: Liqing He, Xiaowei Shi, Xiaoyan Li, Jing Huang, Tengfei Cheng, Xianfeng Wang, Yuxiang Li, Heng Lin, Kazuyuki Edalati, Hiroyuki W. Li

    • Publication Year: 2023

  • “Analysis of the Fluidity and Hot Tearing Susceptibility of AlSi3.5Mg0.5Cu0.4 and A356 Aluminum Alloys”

    • Authors: Guoqing Zou, Yujie Chai, Qiang Shen, Tengfei Cheng, Hong Zhang

    • Publication Year: 2022

  • “The Improvement in Mechanical Properties and Strengthening Mechanism of The New Type of Cast Aluminum Alloy with Low Silicon Content for Automotive Purposes”

    • Authors: Tengfei Cheng, Peng Li, Fucheng Lu, Chao Wang, Hong Zhang, Yuxiang Yang

    • Publication Year: 2022

Conclusion 📈

Tengfei Cheng is a highly accomplished researcher whose work has made significant contributions to the fields of materials science, hydrogen storage, and electrochemical energy storage. His continued research and expertise in developing innovative materials promise to shape the future of sustainable energy solutions and advanced engineering materials.

Jihye Kim | Materials | Best Researcher Award

Dr. Jihye Kim | Materials | Best Researcher Award

Assistant Professor | Colorado School of Mines | United States

Dr. Jihye Kim is an accomplished Assistant Professor at the George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines. With a strong background in extractive metallurgy, resource recovery, and critical materials extraction, Dr. Kim has made significant contributions to sustainable materials processing. Her research focuses on innovative hydrometallurgical techniques, mineral carbonation for carbon sequestration, and chemical modeling of electrolyte systems. Dr. Kim is dedicated to fostering a stimulating learning environment that encourages students to explore, discover, and think critically beyond the classroom.

Professional profile👤

ORCID

Google Scholar

Scopus

Strengths for the Awards✨

  • Outstanding Research Contributions

    • Dr. Jihye Kim has an extensive publication record, including high-impact journal articles, conference papers, and book chapters.
    • Her research focuses on critical topics such as extractive metallurgy, mineral processing, carbon capture, and rare earth element recovery, all of which have significant industrial and environmental implications.
  • Strong Funding and Grant Success

    • She has successfully secured multiple high-value research grants, including funding from the National Science Foundation (NSF), Department of Energy (DOE), NASA, and the Alfred P. Sloan Foundation.
    • Active involvement as a Principal Investigator (PI) and Co-PI in multimillion-dollar research projects.
  • Awards and Recognitions

    • Recipient of the Ontario Trillium Scholarship ($160,000) and multiple academic scholarships and fellowships, demonstrating academic excellence and research impact.
    • Earned the Students Discovery Award (2021) at the University of Toronto, recognizing her research achievements.
  • Industrial and International Research Experience

    • Hands-on experience through engineering internships with Barrick Gold Corporation and National Metallurgical Laboratory, India.
    • Strong international collaborations with institutions in South Korea, Canada, and the USA.
  • Educational and Mentorship Contributions

    • Engaged in teaching undergraduate and graduate courses at the Colorado School of Mines.
    • Experience as a teaching assistant at University of Toronto and Seoul National University, shaping the next generation of metallurgical engineers.

Education 🎓

Dr. Kim earned her Doctor of Philosophy in Chemical Engineering from the University of Toronto (2017-2021), where she worked on sustainable valorization of steelmaking slag under the guidance of Professor Gisele Azimi. Prior to her Ph.D., she obtained a Master of Applied Science in Energy Systems Engineering (2014-2016) and a Bachelor of Applied Science in Energy Resources Engineering (2011-2014) from Seoul National University.

Experience 🌟

Dr. Kim’s academic and professional journey reflects her expertise in metallurgical and materials engineering. She is currently an Assistant Professor at Colorado School of Mines, where she leads cutting-edge research projects and teaches courses on chemical processing, transport phenomena, and hydrometallurgical processing. Previously, she was a Postdoctoral Fellow at the University of Toronto, focusing on resource-efficient hydrometallurgical recovery of platinum group metals and rare earth elements. Her teaching experience includes serving as a Teaching Assistant at the University of Toronto and Seoul National University. She also gained industry experience as an Engineering Intern at Barrick Gold Corporation (Canada) and the National Metallurgical Laboratory (India).

Research Interests On Materials 🔬

Dr. Kim’s research centers on sustainable resource recovery, extractive metallurgy, and carbon capture technologies. She specializes in hydrometallurgical processing, mineral carbonation for CO2 sequestration, critical materials extraction from secondary resources, and electrolyte system modeling. Her work aims to develop environmentally friendly and economically viable methods for metal recovery and waste valorization.

Awards & Honors 🏆

Dr. Kim has received numerous prestigious awards, including the Ontario Trillium Scholarship (2017-2021), the Students Discovery Award (2021), and multiple fellowships from the University of Toronto. She was also awarded the Brain Korea 21 Plus Scholarship, Academic-Industrial Scholarship from Hyundai Resources Development, and several merit-based scholarships from Seoul National University. Her outstanding academic achievements were recognized with Graduation with Honors (Cum Laude) from Seoul National University in 2014.

Publications 📚

Dr. Kim has published extensively in top-tier journals, contributing valuable insights into metallurgical and materials engineering. Some of her notable publications include:

  • The CO2 sequestration by supercritical carbonation of electric arc furnace slag

    • Authors: J Kim, G Azimi
    • Year: 2021
    • Citations: 42
  • An innovative process for extracting scandium from nickeliferous laterite ore: Carbothermic reduction followed by NaOH cracking

    • Authors: J Kim, G Azimi
    • Year: 2020
    • Citations: 22
  • Recovery of scandium and neodymium from blast furnace slag using acid baking–water leaching

    • Authors: J Kim, G Azimi
    • Year: 2020
    • Citations: 20
  • Valorization of electric arc furnace slag via carbothermic reduction followed by acid baking–water leaching

    • Authors: J Kim, G Azimi
    • Year: 2021
    • Citations: 19
  • Technospheric mining of niobium and titanium from electric arc furnace slag

    • Authors: J Kim, G Azimi
    • Year: 2020
    • Citations: 16
  • Matrix complexity effect on platinum group metals analysis using inductively coupled plasma optical emission spectrometry

    • Authors: J Kim, J Anawati, G Azimi
    • Year: 2018
    • Citations: 16
  • Effect of sulfuric acid baking and caustic digestion on enhancing the recovery of rare earth elements from a refractory ore

    • Authors: R Kim, H Cho, J Jeong, J Kim, S Lee, KW Chung, HS Yoon, CJ Kim
    • Year: 2020
    • Citations: 15
  • Selective precipitation of titanium, magnesium, and aluminum from the steelmaking slag leach liquor

    • Authors: J Kim, G Azimi
    • Year: 2022
    • Citations: 13
  • Mineral carbonation of iron and steel by-products: State-of-the-art techniques and economic, environmental, and health implications

    • Authors: S Wang, J Kim, T Qin
    • Year: 2024
    • Citations: 12
  • Recent advancements in hydrometallurgy: solubility and separation

    • Authors: KN Han, R Kim, J Kim
    • Year: 2024
    • Citations: 10

Conclusion 🎯

Dr. Jihye Kim is a dedicated researcher and educator committed to advancing metallurgical and materials engineering. Her work in extractive metallurgy, critical materials recovery, and sustainable processing methods contributes to the global effort toward environmentally responsible resource management. Through her innovative research, teaching, and mentorship, Dr. Kim continues to inspire the next generation of engineers and scientists in the field of materials engineering.