Ricardo Oliveira Freire | Chemistry and Materials Science | Best Researcher Award

Prof. Dr. Ricardo Oliveira Freire | Chemistry and Materials Science | Best Researcher Award

Federal University of Sergipe | Brazil

Dr. Ricardo Oliveira Freire (🎓 b. 29 May 1977, Aracaju, Brazil) is a distinguished Brazilian chemist renowned for his pioneering work in theoretical and computational chemistry, particularly involving lanthanide complexes. A Level 1C Researcher of Productivity at CNPq, Dr. Freire is currently an Associate Professor at the Federal University of Sergipe (UFS). With over two decades of dedication to research and teaching, he has led numerous innovative projects, developed the renowned LUMPAC software package, and significantly advanced the Sparkle model. His scientific influence spans Brazil and beyond through prolific publications, international collaborations, and impactful mentorship.

Author Profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

Dr. Ricardo Oliveira Freire stands out as a highly accomplished researcher in the field of theoretical and computational chemistry, particularly in lanthanide luminescence and semiempirical quantum methods. With a prestigious CNPq Level 1C Productivity Fellowship, he reflects national recognition for sustained excellence. Dr. Freire has authored over 123 peer-reviewed publications, accumulating over 5,800 citations and achieving a Google Scholar h-index of 39, indicating both productivity and influence. His projects like LUMPAC and Sparkle/RM1 models have made significant contributions to computational chemistry and spectroscopy, especially for lanthanide complexes with biomedical and photonic applications.

He has mentored numerous students at undergraduate, Master’s, Ph.D., and postdoctoral levels, showcasing a robust commitment to research training. His involvement with more than 40 scientific journals as a reviewer and editorial board member, including JACS, Inorganic Chemistry, and J. Phys. Chem., reflects his thought leadership and service to the scientific community. Furthermore, his work has been acknowledged with multiple national and international awards, including listings in AD Scientific Index Top 10,000 Latin American Scientists, a cover feature in Dalton Transactions, and honors for impactful conference presentations and guidance.

🎓 Education

Dr. Freire earned his Bachelor’s degree in Chemistry from the Federal University of Sergipe in 2002, where he explored the theoretical design of highly luminescent lanthanide complexes. He pursued both his M.Sc. (2002–2004) and Ph.D. (2004–2007) at the Federal University of Pernambuco under Prof. Alfredo Mayall Simas, focusing on the development and enhancement of the Sparkle model for lanthanides. His academic trajectory laid a robust foundation for high-level research in physical and theoretical chemistry.

👨‍🏫 Experience

Since 2007, Dr. Freire has been actively involved in teaching and research at UFS, where he has held various academic and administrative roles including Head of the Chemistry Department and Coordinator of the Graduate Program in Chemistry. He also collaborates with the Federal University of Pernambuco and has taught post-graduate courses at leading institutions like UNICAMP and USP. A sought-after reviewer for over 40 top-tier journals, he exemplifies excellence in both pedagogy and peer contribution.

🔍 Research Interests On Chemistry and Materials Science

Dr. Freire’s research delves into semiempirical methods and computational modeling of lanthanide complexes, with notable contributions to the RM1 and Sparkle methods. He leads the LUMPAC (Luminescence Package) project, enabling accurate predictions of photophysical properties. His interdisciplinary work spans materials science, bioinorganic chemistry, and quantum mechanics, collaborating globally with teams from the US, India, Russia, Portugal, and more.

🏆 Awards

Dr. Freire has received numerous accolades including the Latin America Top 10,000 Scientist (2021, 2023), BRICS Top 10,000 Scientist (2021), and recognitions from prestigious institutions like the Royal Society of Chemistry and the Brazilian Chemical Society. He was honored with cover features in journals, mentoring awards, and commendations from academic and government bodies, solidifying his reputation as a leading scientific voice in Latin America.

📄 Publications

  • RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I
    Authors: GB Rocha, RO Freire, AM Simas, JJP Stewart
    Year: 2006
    Cited by: 936

  • Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8
    Authors: IB Vasconcelos, TG da Silva, GCG Militão, TA Soares, NM Rodrigues, …
    Year: 2012
    Cited by: 330

  • LUMPAC lanthanide luminescence software: Efficient and user friendly
    Authors: JDL Dutra, TD Bispo, RO Freire
    Year: 2014
    Cited by: 277

  • Sparkle model for the calculation of lanthanide complexes: AM1 parameters for Eu(III), Gd(III), and Tb(III)
    Authors: RO Freire, GB Rocha, AM Simas
    Year: 2005
    Cited by: 195

  • Spectroscopic Study of a UV‐Photostable Organic–Inorganic Hybrids Incorporating an Eu³⁺ β‐Diketonate Complex
    Authors: PP Lima, RA Sá Ferreira, RO Freire, FA Almeida Paz, L Fu, S Alves Jr, …
    Year: 2006
    Cited by: 151

  • 3-phenyl-4-benzoyl-5-isoxazolonate Complex of Eu³⁺ with Tri-n-octylphosphine Oxide as a Promising Light-conversion Molecular Device
    Authors: R Pavithran, NS Saleesh Kumar, S Biju, MLP Reddy, SA Junior, RO Freire
    Year: 2006
    Cited by: 133

  • Sparkle/PM7 Lanthanide Parameters for the Modeling of Complexes and Materials
    Authors: JDL Dutra, MAM Filho, GB Rocha, RO Freire, AM Simas, JJP Stewart
    Year: 2013
    Cited by: 130

  • Sparkle/PM6 Parameters for all Lanthanide Trications from La(III) to Lu(III)
    Authors: RO Freire, AM Simas
    Year: 2010
    Cited by: 124

  • Tb³⁺ → Eu³⁺ Energy Transfer in Mixed-Lanthanide-Organic Frameworks
    Authors: MO Rodrigues, JDL Dutra, LAO Nunes, GF de Sá, WM de Azevedo, …
    Year: 2012
    Cited by: 123

  • Energy transfer mechanisms in organic-inorganic hybrids incorporating europium (III): a quantitative assessment by light emission spectroscopy
    Authors: PP Lima, SS Nobre, RO Freire, SA Junior, RA Sá Ferreira, U Pischel, …
    Year: 2007
    Cited by: 101

  • Sparkle model for AM1 calculation of lanthanide complexes: Improved parameters for europium
    Authors: GB Rocha, RO Freire, NB da Costa Jr, GF de Sá, AM Simas
    Year: 2004
    Cited by: 100

  • Tuning of the excitation wavelength from UV to visible region in Eu³⁺-β-diketonate complexes: Comparison of theoretical and experimental photophysical properties
    Authors: V Divya, RO Freire, MLP Reddy
    Year: 2011
    Cited by: 97

✅ Conclusion

With an illustrious career marked by innovative research, international impact, and unwavering academic leadership, Dr. Ricardo Oliveira Freire exemplifies the qualities of a “Best Researcher Award” recipient. His dedication to advancing theoretical chemistry, mentoring future scientists, and fostering global collaboration positions him as a pillar in the scientific community. This nomination not only honors his achievements but inspires continued excellence in chemical sciences.

Zhixiong Cai | Materials | Best Researcher Award

Assoc. Prof. Dr. Zhixiong Cai | Materials | Best Researcher Award

Minnan Normal University | China

Zhixiong Cai is an Associate Professor and Master’s Supervisor at the College of Chemistry, Chemical Engineering, and Environmental Science at Minnan Normal University, located in Zhangzhou, Fujian Province, China. With expertise in luminescent materials and electrocatalysis, he has gained a reputation for his impactful research and academic contributions. His work primarily focuses on advancing materials science, particularly in the context of energy conversion and storage.

Professional profile👤

ORCID

Google Scholar

Scopus

Strengths for the Awards✨

  • Solid Educational Background: He holds a Ph.D. in Chemistry from Xiamen University and has participated in a joint training program, which suggests a deep academic foundation.

  • Research Expertise: His research interests in luminescent materials and electrocatalysis are highly relevant and cutting-edge in chemistry and environmental science.

  • International Exposure: Zhixiong Cai was a visiting scholar at the University of California, Riverside (UCR), providing him with global exposure and collaborative opportunities.

  • Impressive Publication Record: He has published several high-impact papers, including in prestigious journals like Angewandte Chemie and Nano Energy, demonstrating his contribution to significant advancements in his field.

  • Awards and Recognition: Receiving the Youth May Fourth Medal and other competition honors reflects his excellence and recognition from academic and professional communities.

Education:

Dr. Cai earned his Ph.D. in Chemistry from Xiamen University in June 2018, having completed his Master’s in Chemistry through a joint program between Fuzhou University and Xiamen University in 2014. He also holds a Bachelor’s degree in Chemistry from Fuzhou University. During his career, he spent time as a Visiting Scholar at the University of California, Riverside in 2017, further expanding his research horizons and collaborations internationally.

Experience:

Dr. Cai’s academic career began in September 2018 as a Lecturer at Minnan Normal University. By July 2019, he was promoted to Associate Professor at the same institution. His research interests have led him to participate in various national and international projects, contributing to the development of advanced chemical materials and applications.

Research Interests On Materials

Dr. Cai’s research primarily focuses on luminescent materials and electrocatalysis. His work aims to enhance energy conversion efficiencies and develop sustainable materials for a variety of applications, including renewable energy technologies. He is particularly interested in the development of high-performance catalysts and materials for environmental and energy-related solutions.

Publications:

  • Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction

    • Authors: W Xu, F Lyu, Y Bai, A Gao, J Feng, Z Cai, Y Yin

    • Year: 2018

    • Cited by: 504

  • Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid

    • Authors: X Chen, G Wu, Z Cai, M Oyama, X Chen

    • Year: 2014

    • Cited by: 414

  • AuPd bimetallic nanoparticles decorated on graphene nanosheets: their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction

    • Authors: X Chen, Z Cai, X Chen, M Oyama

    • Year: 2014

    • Cited by: 207

  • An ultrasensitive and reversible fluorescence sensor of humidity using perovskite CH₃NH₃PbBr₃

    • Authors: W Xu, F Li, Z Cai, Y Wang, F Luo, X Chen

    • Year: 2016

    • Cited by: 174

  • Green synthesis of graphene–PtPd alloy nanoparticles with high electrocatalytic performance for ethanol oxidation

    • Authors: X Chen, Z Cai, X Chen, M Oyama

    • Year: 2014

    • Cited by: 151

  • Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide

    • Authors: X Chen, Z Cai, Z Huang, M Oyama, Y Jiang, X Chen

    • Year: 2013

    • Cited by: 130

  • A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode

    • Authors: B Su, H Shao, N Li, X Chen, Z Cai, X Chen

    • Year: 2017

    • Cited by: 120

  • PtPd nanodendrites supported on graphene nanosheets: a peroxidase-like catalyst for colorimetric detection of H₂O₂

    • Authors: X Chen, B Su, Z Cai, X Chen, M Oyama

    • Year: 2014

    • Cited by: 108

  • Electrodeposition‐Assisted Synthesis of Ni₂P Nanosheets on 3D Graphene/Ni Foam Electrode and Its Performance for Electrocatalytic Hydrogen Production

    • Authors: Z Cai, X Song, Y Wang, X Chen

    • Year: 2015

    • Cited by: 88

  • Synthesis of bimetallic PtPd nanocubes on graphene with N, N-dimethylformamide and their direct use for methanol electrocatalytic oxidation

    • Authors: X Chen, Z Cai, X Chen, M Oyama

    • Year: 2014

    • Cited by: 85

Conclusion:

Dr. Zhixiong Cai is an accomplished researcher and educator, with a deep commitment to advancing the fields of luminescent materials and electrocatalysis. His academic achievements, robust publication record, and numerous accolades underscore his dedication to driving forward scientific discovery and innovation. As an active member of the academic community, his work continues to have a significant impact on material sciences and energy applications.

Joanna Szymkowiak | Materials | Best Researcher Award

Dr. Joanna Szymkowiak | Materials | Best Researcher Award

Adam Mickiewicz University | Poland

Dr. Joanna Katarzyna Szymkowiak, is a dedicated scientist in the field of supramolecular chemistry. Since January 2025, she has been working as an Adjunct Postdoctoral Scientist at the Faculty of Chemistry, Adam Mickiewicz University (AMU), Poland. Her career spans various esteemed institutions, including her previous role as a Senior Scientist at Selvita S.A. and as a Postdoctoral Scientist at the University of British Columbia, Canada. Throughout her academic journey, Joanna has made significant contributions to organic chemistry, particularly in functionalized chiral macrocycles and organic cages.

Professional profile👤

ORCID

Scopus

Strengths for the Awards✨

  • Extensive Research Background: Dr. Szymkowiak has a diverse and impactful research portfolio, with a focus on chiral materials and supramolecular chemistry. Her research is cutting-edge, with recent papers published in reputable journals like Journal of Physical Chemistry Letters and Chemistry – A European Journal.

  • Impressive Academic and Industry Experience: She has held various postdoctoral positions at prestigious institutions like Adam Mickiewicz University (AMU) and the University of British Columbia, as well as industry experience with Selvita S.A. Her ability to bridge academia and industry is an asset for driving practical applications of her research.

  • Recognized by the Scientific Community: Dr. Szymkowiak has received multiple accolades for her work, such as the Aleksander Zamojski’s Award and an honorable mention for her doctoral dissertation. These honors are a testament to the quality and significance of her contributions to organic and supramolecular chemistry.

  • Contribution to International Collaboration: Her involvement in high-level international projects, such as the Mieczysław Bekker Program funded by the National Agency for Academic Exchange (NAWA), and collaborations with world-renowned researchers like Prof. Mark MacLachlan, underscores her ability to work within global scientific communities.

  • Prolific Publication Record: Dr. Szymkowiak has contributed to numerous high-impact publications across a range of prestigious journals. Her work covers diverse aspects of chemistry, particularly in the development of functionalized chiral materials and organic cages, which are highly relevant to modern chemistry research.

Education 🎓

Dr. Szymkowiak completed her PhD in 2018 at AMU, where she focused on “Functionalized Chiral Macrocycles and Organic Cages” under the supervision of Prof. Marcin Kwit. Her earlier studies at AMU led her to a deep engagement with chemistry, particularly biological chemistry, and chemical analysis. Her education has laid a strong foundation for her ongoing research in organic and materials chemistry.

Experience 💼

Dr. Szymkowiak’s career spans prestigious positions across both academic and industry sectors. She has worked on cutting-edge research projects at AMU, the University of British Columbia, and Selvita S.A., bringing her expertise to a wide range of research areas. Her responsibilities included scientific project management, student supervision, and active participation in scientific conferences. She has also made significant strides in interdisciplinary research, focusing on chiral materials, mesoporous organosilica films, and supramolecular chemistry.

Research Interests On Materials 🔬

Dr. Szymkowiak’s research interests lie at the intersection of organic chemistry, materials science, and supramolecular chemistry. She specializes in the design and synthesis of chiral organosilica materials, including mesoporous films and organic cages. Her work aims to develop innovative solutions for materials with unique optical and mechanical properties, crucial for applications in nanoscience and other advanced fields.

Awards 🏆

Dr. Szymkowiak has received several prestigious awards and recognitions. These include a Postdoctoral Fellowship from the National Agency for Academic Exchange (NAWA) in the Mieczysław Bekker Program and the Aleksander Zamojski’s Award for her outstanding doctoral dissertation. Additionally, she has been honored with multiple awards for oral and poster presentations at national conferences and was acknowledged by the Royal Chemical Society in 2025 for her publication on Nanoscale.

Publication 📚

Dr. Szymkowiak has contributed to numerous high-impact journals in the field of chemistry. Her recent publications include:

  • Thio-modified trianglimines, a novel group of chiral macrocyclic compounds of high structural dynamics

    • Authors: Natalia Prusinowska, Agnieszka Czapik, Joanna Katarzyna Szymkowiak, Marcin Kwit

    • Publication Year: 2025

  • Excited State Dynamics Govern Emission Properties of Unique Silsesquioxane-Salphen-Based Zinc Compounds

    • Authors: Joanna Szymkowiak, Tomasz Pędziński, Beata Dudziec

    • Publication Year: 2025

  • Hybrid Inclusion Materials Based on Chiral Nematic Mesoporous Organosilica with Incorporated Cyclodextrin Receptors

    • Authors: Joanna Katarzyna Szymkowiak

    • Publication Year: 2025

  • Controlling the optical properties of chiral nematic mesoporous organosilica films with bioadditives

    • Authors: Joanna Katarzyna Szymkowiak, Lucas Andrew, Wadood Y. Hamad, Mark MacLachlan

    • Publication Year: 2024

  • Halloysite nanotubes enhance the mechanical properties and thermal stability of iridescent cellulose nanocrystal films

    • Authors: Gao, H.; Soto, M.A.; Szymkowiak, J.K.; Andrew, L.J.; Hamad, W.Y.; MacLachlan, M.J.

    • Publication Year: 2023

  • Unravelling Structural Dynamics, Supramolecular Behavior, and Chiroptical Properties of Enantiomerically Pure Macrocyclic Tertiary Ureas and Thioureas

    • Authors: Natalia Prusinowska, Joanna Szymkowiak, Marcin Kwit

    • Publication Year: 2023

  • Specific Noncovalent Association of Truncated exo-Functionalized Triangular Homochiral Isotrianglimines through Head-to-Head, Tail-to-Tail, and Honeycomb Supramolecular Motifs

    • Authors: Janiak, A.; Gajewy, J.; Szymkowiak, J.; Gierczyk, B.; Kwit, M.

    • Publication Year: 2022

  • Tuning the Properties of Chiral Nematic Mesoporous (Organo)silica Through Thiol‐Ene Click Chemistry

    • Authors: Joanna Katarzyna Szymkowiak

    • Publication Year: 2022

  • Simple modifications of nicotinic, isonicotinic, and 2,6-dichloroisonicotinic acids toward new weapons against plant diseases

    • Authors: Czerwoniec, P.; Szymkowiak, J.; Smiglak, M.

    • Publication Year: 2021

  • Consistent supramolecular assembly arising from a mixture of components-self-sorting and solid solutions of chiral oxygenated trianglimines

    • Authors: Szymkowiak, J.; Warżajtis, B.; Rychlewska, U.; Kwit, M.

    • Publication Year: 2018

Conclusion 🌍

Dr. Joanna Katarzyna Szymkowiak is an accomplished researcher with significant contributions to the field of supramolecular and materials chemistry. Her dedication to advancing the understanding of chiral materials and organic cages has made her a respected figure in both academic and scientific communities. With a strong foundation in education and experience, she continues to push the boundaries of chemistry, inspiring future research in nanoscience and materials development.

Dhiraj Kumar Rana | Materials | Best Researcher Award

Dr. Dhiraj Kumar Rana | Materials | Best Researcher Award

Postdoctoral Fellow | Indian Institute of Technology Delhi | India

Dr. Dhiraj Kumar Rana is a distinguished researcher in Materials Science and Polymer Engineering, currently serving as a National Post-Doctoral Fellow at the Department of Materials Science and Engineering, Indian Institute of Technology Delhi. His research primarily focuses on multiphase polymeric and elastomeric materials, functional smart materials, and their applications in energy storage, wearable electronics, and soft robotics. With a strong academic foundation and extensive research contributions, Dr. Rana has made significant advancements in flexible charge storage materials and elastomeric nanocomposites.

Profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Extensive Research Experience – With a career spanning over two decades in physical chemistry and photochemistry, Professor Yang has made significant contributions to the field.
  • Innovative Research in Phototherapy – His work on photochemical probes, nanotechnology for drug-controlled release, and phototherapy (both photodynamic and photothermal therapy) is impactful in medical and pharmaceutical sciences.
  • High Research Output – He has published 46 SCI-indexed research articles, with recent publications in top-tier journals like Biomaterials and Analytical Chemistry.
  • Funded Research Projects – Successfully secured grants, including the National Natural Science Foundation (21473101).
  • Intellectual Property Contributions – Holds four patents, demonstrating his focus on innovation and real-world applications.

Education 🎓

Dr. Rana obtained his B.Sc. in Physics (Honours) from North Orissa University, Baripada, in 2008, followed by an M.Sc. in Physics from NIT Rourkela in 2010. He further specialized in Advanced Materials Science and Technology with an M.Tech. from NIT Durgapur in 2013. His Ph.D., awarded by NIT Durgapur in 2019, focused on Experimental Condensed Matter Physics, emphasizing electrical and magnetic properties of polymer multiferroic nanocomposites.

Experience 🌍

Dr. Rana has held several research positions, including Junior Research Fellow at BIT Patna, Research Associate at NIT Durgapur, and Institute Post-Doctoral Fellow at IISER Mohali. Since 2022, he has been a National Post-Doctoral Fellow at IIT Delhi, contributing significantly to the development of novel polymeric materials for flexible electronics. His teaching experience includes courses in Engineering Physics and Advanced Physics at NIT Durgapur and Jharkhand Raksha Shakti University, Ranchi.

Research Interests On Materials🔬

Dr. Rana’s research encompasses a broad range of topics within Materials Science and Polymer Engineering. His expertise includes multiphase polymeric and elastomeric materials, dielectric and magnetic elastomers, flexible charge storage, nanomaterial synthesis (barium titanate, ferrite nanoparticles, graphene oxide, etc.), and applications in soft robotics and wearable electronics. He is proficient in advanced characterization techniques such as XRD, SEM, TEM, AFM, and various electrical, dielectric, and thermal analysis methods.

Awards 🏆

Dr. Rana has been recognized for his contributions to materials science through prestigious fellowships, including the SERB-National Post-Doctoral Fellowship. His research achievements have also earned him accolades in the field of advanced functional materials.

Publications 📚

  • Title: Electrical and room temperature multiferroic properties of polyvinylidene fluoride nanocomposites doped with nickel ferrite nanoparticles
    Authors: DK Rana, SK Singh, SK Kundu, S Roy, S Angappane, S Basu
    Publication Year: 2019
    Citations: 67

  • Title: Electrical and magnetic properties of polyvinyl alcohol–cobalt ferrite nanocomposite films
    Authors: DK Rana, SK Singh, SK Kundu, RJ Choudhary, S Basu
    Publication Year: 2018
    Citations: 34

  • Title: Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials
    Authors: PS Banerjee, DK Rana, SS Banerjee
    Publication Year: 2022
    Citations: 26

  • Title: Relaxor ferroelectric behavior of “A” site deficient Bismuth doped Barium Titanate ceramic
    Authors: T Badapanda, V Senthil, DK Rana, S Panigrahi, S Anwar
    Publication Year: 2012
    Citations: 25

  • Title: An easy synthesis of carbon-supported silver–cobalt bimetallic nanoparticles to study the electrocatalytic performance in alkaline borohydride fuel cell
    Authors: S Dey, S Pramanik, P Chakraborty, DK Rana, S Basu
    Publication Year: 2022
    Citations: 18

  • Title: Development of organic-inorganic flexible PVDF-LaFeO3 nanocomposites for the enhancement of electrical, ferroelectric and magnetic properties
    Authors: DK Rana, V Mehta, SK Kundu, S Basu
    Publication Year: 2020
    Citations: 18

  • Title: Enhanced multiferroic, magnetodielectric and electrical properties of Sm doped Lanthanum ferrite nanoparticles
    Authors: SK Kundu, DK Rana, L Karmakar, D Das, S Basu
    Publication Year: 2019
    Citations: 15

  • Title: Enhancement of electrical and magnetodielectric properties of BiFeO3 incorporated PVDF flexible nanocomposite films
    Authors: DK Rana, SK Kundu, RJ Choudhary, S Basu
    Publication Year: 2019
    Citations: 14

  • Title: Surfactant-free synthesis of carbon-supported silver (Ag/C) nanobars as an efficient electrocatalyst for alcohol tolerance and oxidation of sodium borohydride in alkaline medium
    Authors: S Dey, P Chakraborty, DK Rana, S Pramanik, S Basu
    Publication Year: 2021
    Citations: 13

  • Title: Influence of manganese on multiferroic and electrical properties of lanthanum ferrite nanoparticles
    Authors: SK Kundu, DK Rana, A Banerjee, D Das, S Basu
    Publication Year: 2019
    Citations: 7

Conclusion 📊

Dr. Dhiraj Kumar Rana is an accomplished scientist whose research has significantly contributed to the advancement of functional and smart materials. His expertise in polymeric nanocomposites and energy storage applications continues to drive innovation in flexible electronics and soft robotics. With an impressive publication record and ongoing research at IIT Delhi, Dr. Rana remains at the forefront of cutting-edge materials science research.

Swastika Banerjee | Materials | Best Researcher Award

Assist. Prof. Dr. Swastika Banerjee | Materials | Best Researcher Award

Assistant Professor | Indian Institute of Technology Roorkee | India

Dr. Swastika Banerjee is a distinguished computational chemist and materials scientist, currently serving as an Assistant Professor in the Department of Chemistry at IIT Roorkee, India. With a strong research background in theoretical chemistry and materials informatics, she has made significant contributions to energy storage, electrochemistry, and computational materials design. Her work integrates advanced simulation techniques to develop novel materials for sustainable energy solutions.

Profile

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

Diverse Research Experience – With multiple postdoctoral positions at UC San Diego, University of Luxembourg, Lawrence Berkeley National Laboratory, and Shenzhen University, Banerjee has gained international exposure and collaborated with world-class researchers.

Impactful Publications – Her research is published in high-impact journals such as Nature Communications, Journal of the American Chemical Society (JACS), Advanced Functional Materials, and ACS Applied Materials & Interfaces, demonstrating strong research impact. Many of these papers are as a corresponding author, indicating leadership in her field.

Strong Contributions to Energy Storage and Materials Science – Her computational work on lithium-ion batteries, sodium-ion batteries, and solid electrolytes contributes significantly to advancing next-generation energy storage solutions, which are crucial for sustainable energy applications.

Research Grants & Fellowships – She has secured competitive research grants such as the EMR-II/ASPIRE Grant (2024), Faculty Initiation Grant (IIT Roorkee, 2022), Core Research Grant (SERB, DST, India, 2022), and was offered the Ramanujan Fellowship and Alexander von Humboldt Fellowship.

Patents & Innovations – A patent on “Chlorine-based sodium solid electrolyte” highlights her ability to translate research into practical applications, an essential factor for the award.

Recognized Expertise – She serves as a reviewer for high-impact journals (Angewandte Chemie, Chemistry of Materials, Joule, Nature Communications), showcasing her standing in the scientific community.

Education 🎓

Dr. Banerjee obtained her Ph.D. from the Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore (2011-2017). Prior to that, she earned an M.Sc. in Chemistry from IIT Kharagpur (2009-2011), securing the 3rd rank in her batch, and a B.Sc. in Chemistry (Hons) from The University of Burdwan (2006-2009), where she achieved the 1st rank in her university.

Experience 💼

  • Assistant Professor, IIT Roorkee (2022-Present)
  • Postdoctoral Associate, University of Luxembourg (Aug 2021 – Mar 2022)
  • Postdoctoral Associate, University of California San Diego, USA (Mar 2019 – Jul 2021)
  • Postdoctoral Researcher & Affiliate, Lawrence Berkeley National Laboratory & Shenzhen University, China (Jul 2017 – Feb 2019)
  • Research Associate, Jawaharlal Nehru Center for Advanced Scientific Research, India (Jan 2017 – Jun 2017)
  • Visiting Scientist, Institute of Semiconductors, Chinese Academy of Science, China (Nov 2016 – Dec 2016)

Research Interests On Materials🔍

Dr. Banerjee’s research focuses on computational materials science, exploring:

  • Non-local many-body dispersion interactions in materials
  • Electrochemistry and interfacial phenomena
  • Battery materials and energy storage solutions
  • Non-adiabaticity in chemical reactions
  • Thermoelectric properties of nanostructures
  • First-principles electronic structure theory
  • Algorithmic development for large-scale simulations
  • Materials informatics and data infrastructure

Research Contributions 🎯

Dr. Banerjee has advanced computational methods such as Density Functional Theory (DFT), Boltzmann Transport Equation modeling, and Non-Adiabatic Molecular Dynamics to study energy storage materials, excited state dynamics, and charge transport in semiconductors. Her theoretical insights have led to new frameworks for lithium superionic conductors and efficient electrode materials for next-generation batteries.

Awards & Recognitions 🏆

  • EMR-II/ASPIRE Grant, CSIR, India (2024)
  • Faculty Initiation Grant, IIT Roorkee (2022)
  • Core Research Grant, SERB, DST, India (2022)
  • Best Poster Awards at Chemical Frontiers (2015), Theoretical Chemistry Symposium (2014), Winter School on Frontiers in Materials (2014), and STCC-FC (2013)
  • Jawaharlal Nehru Memorial Award for securing 1st rank in The University of Burdwan (2010)
  • Alexander von Humboldt Fellowship for Postdoctoral Research (declined, 2021)
  • Ramanujan Fellowship (declined, 2021)
  • National Key R&D Program of China & National Natural Science Foundation of China Grants (2017)
  • Merit Scholarship, IIT Kharagpur (2010-2011)

Publications 📚

  1. Rechargeable alkali-ion battery materials: theory and computation

    • Authors: A Van der Ven, Z Deng, S Banerjee, SP Ong
    • Year: 2020
    • Citations: 255
  2. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries

    • Authors: EA Wu, S Banerjee, H Tang, PM Richardson, JM Doux, J Qi, Z Zhu, …
    • Year: 2021
    • Citations: 196
  3. Tunable Lithium-Ion Transport in Mixed-Halide Argyrodites Li6–xPS5–xClBrx: An Unusual Compositional Space

    • Authors: SV Patel, S Banerjee, H Liu, P Wang, PH Chien, X Feng, J Liu, SP Ong, …
    • Year: 2021
    • Citations: 136
  4. Possible application of 2D-boron sheets as anode material in lithium ion battery: A DFT and AIMD study

    • Authors: S Banerjee, G Periyasamy, SK Pati
    • Year: 2014
    • Citations: 99
  5. Bridging the gap between simulated and experimental ionic conductivities in lithium superionic conductors

    • Authors: J Qi, S Banerjee, Y Zuo, C Chen, Z Zhu, MLH Chandrappa, X Li, SP Ong
    • Year: 2021
    • Citations: 84
  6. Origin of the Order–Disorder Transition and the Associated Anomalous Change of Thermopower in AgBiS2 Nanocrystals: A Combined Experimental and Theoretical Study

    • Authors: SN Guin, S Banerjee, D Sanyal, SK Pati, K Biswas
    • Year: 2016
    • Citations: 52
  7. Anodic performance of black phosphorus in magnesium-ion batteries: the significance of Mg–P bond-synergy

    • Authors: S Banerjee, SK Pati
    • Year: 2016
    • Citations: 49
  8. Thermodynamics and kinetics of the cathode–electrolyte interface in all-solid-state Li–S batteries

    • Authors: ML Holekevi Chandrappa, J Qi, C Chen, S Banerjee, SP Ong
    • Year: 2022
    • Citations: 46
  9. Motif-based design of an oxysulfide class of lithium superionic conductors: Toward improved stability and record-high Li-ion conductivity

    • Authors: S Banerjee, X Zhang, LW Wang
    • Year: 2019
    • Citations: 31
  10. Synthetic control of structure and conduction properties in Na–Y–Zr–Cl solid electrolytes

  • Authors: E Sebti, J Qi, PM Richardson, P Ridley, EA Wu, S Banerjee, R Giovine, …
  • Year: 2022
  • Citations: 30

Conclusion 🔖

Dr. Swastika Banerjee is a leading scientist in the field of computational chemistry and materials science. With a deep understanding of first-principles simulations and data-driven materials design, she continues to push the boundaries of sustainable energy research. Through her academic and research contributions, she is shaping the future of next-generation energy storage and electronic materials development.