Hyesung Park | Chemistry and Materials Science | Best Researcher Award

Prof. Dr. Hyesung Park | Chemistry and Materials Science | Best Researcher Award

Korea University | South Korea

Dr. Hyesung Park, a distinguished Professor at Korea University, is an internationally recognized authority in hetero-dimensional materials synthesis and their applications in functional devices, including energy harvesting, nanoelectronics, and nanophotonics. His academic journey spans world-leading institutions such as MIT, Northwestern University, and UNIST, where he has consistently advanced renewable energy technologies and next-generation device engineering. He earned his Ph.D. in Electrical Engineering and Computer Science from MIT with groundbreaking research on CVD graphene for organic photovoltaics, pioneering innovations in transparent conducting electrodes that have shaped subsequent advances in the field. Before joining Korea University, he held prestigious research and faculty positions that further strengthened his international reputation. At Korea University, Dr. Park leads pioneering work in integrative energy engineering, with research spanning hybrid nanostructures, scalable perovskite solar cells, electro/photo-catalysis, graphene-based devices, and triboelectric nanogenerators, producing notable innovations in solar cell production and energy harvesting materials. He has authored 116 Publications, accumulated 5,452 citations, and holds an impressive h-index of 36, reflecting the global impact of his scholarship. His highly cited works on graphene electrodes and hybrid solar cells have been published in top-tier journals such as Nature Nanotechnology, ACS Nano, and Advanced Energy Materials. Widely acclaimed for his leadership, impactful publications, and international collaborations, Dr. Hyesung Park is celebrated not only for advancing materials science and energy technologies but also for inspiring future scientists and engineers through his mentorship and academic contributions. Honored with national and international recognition, he exemplifies excellence in research, education, and innovation, and his pioneering contributions continue to drive breakthroughs in sustainable energy technologies that are shaping a cleaner and more efficient future.

Profile: Scopus | Google Scholar | ORCID

Featured Publications

Kim, K. K., Reina, A., Shi, Y., Park, H., Li, L. J., Lee, Y. H., & Kong, J. (2010). Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 21(28), 285205.

Park, H., Brown, P. R., Bulović, V., & Kong, J. (2012). Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Letters, 12(1), 133–140.

Park, H., Rowehl, J. A., Kim, K. K., Bulović, V., & Kong, J. (2010). Doped graphene electrodes for organic solar cells. Nanotechnology, 21(50), 505204.

Park, H., Chang, S., Zhou, X., Kong, J., Palacios, T., & Gradečak, S. (2014). Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Letters, 14(9), 5148–5154.

Park, H., Chang, S., Jean, J., Cheng, J. J., Araujo, P. T., Wang, M., Bawendi, M. G., & Kong, J. (2013). Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Letters, 13(1), 233–239.

Koo, D., Jung, S., Seo, J., Jeong, G., Choi, Y., Lee, J., Lee, S. M., Cho, Y., Jeong, M., & Park, H. (2020). Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes. Joule, 4(5), 1021–1034.

Oh, N. K., Seo, J., Lee, S., Kim, H. J., Kim, U., Lee, J., Han, Y. K., & Park, H. (2021). Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nature Communications, 12(1), 4606.

Oh, N. K., Kim, C., Lee, J., Kwon, O., Choi, Y., Jung, G. Y., Lim, H. Y., Kwak, S. K., Kim, G., & Park, H. (2019). In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours. Nature Communications, 10(1), 1723.

Ghazala Ashraf | Chemistry and Materials Science | Best Researcher Award

Dr. Ghazala Ashraf | Chemistry and Materials Science | Best Researcher Award

Fudan University | China

Dr. Ghazala Ashraf is a Pakistani postdoctoral researcher (age 32) based in Shanghai, China, with expertise in nanomaterials, biosensing, and wearable diagnostics. With a Ph.D. from Huazhong University of Science and Technology (HUST) and postdoc roles at Fudan University and HUST, she has published extensively in top journals (Advanced MaterialsNature CommunicationsACS Applied Materials & Interfaces). Her work focuses on innovative sensor technologies for healthcare and environmental monitoring.

Professional profile👤

ORCID

Google Scholar

Scopus

Strengths for the Awards✨

  1. Strong Academic and Research Background

    • Holds a PhD in Analytical Chemistry from Huazhong University of Science and Technology (HUST) and has 4+ years of postdoctoral experience at prestigious institutions (HUST and Fudan University).

    • Research spans nanomaterials, biosensing, wearable diagnostics, and electrochemical sensors, aligning with cutting-edge scientific advancements.

  2. High-Quality Publications in Top-Tier Journals

    • First-author publications in high-impact journals (e.g., Advanced Materials, Nature Communications, Journal of Hazardous Materials, ACS Applied Materials & Interfaces, Chemical Engineering Journal).

    • Multiple co-authored papers in Q1 journals, demonstrating collaborative research strength.

    • Google Scholar profile shows consistent citations, indicating research impact.

  3. Innovative Research Contributions

    • Developed nanomaterial-integrated microneedle patches for real-time biomarker monitoring (e.g., L-Cysteine detection).

    • Worked on MOFs, 2D materials, and nanozymes for biosensing applications, contributing to early disease diagnostics.

    • Explored wearable and microfluidic devices, a rapidly growing field in personalized healthcare.

  4. Leadership and Collaboration

    • Principal Investigator (PI) for postdoctoral research projects, securing funding and leading research directions.

    • Active collaborations with Fudan University, HUST, and international researchers.

    • Mentored PhD and Master’s students, contributing to academic development.

  5. Recognition and Awards

    • Recipient of prestigious scholarships (CSC PhD scholarship, HUST Academic Excellence Award).

    • Keynote speaker at international conferences, showcasing thought leadership in nanomaterials and biosensing.

    • Review editor and journal reviewer, contributing to peer review in analytical chemistry.

Education 🎓

  • Ph.D. in Analytical Chemistry (2020): Huazhong University of Science and Technology (HUST), China.

  • M.Sc. in Analytical Chemistry (2016): Government College University, Faisalabad, Pakistan.

Experience 💼

  • Postdoctoral Researcher (2023–present): Fudan University, Shanghai.

  • Postdoctoral Researcher (2020–2023): HUST, Wuhan.

  • Research Associate (2013–2017): National Institute for Biotechnology and Genetic Engineering (NIBGE), Pakistan.

Research Interests On Chemistry and Materials Science 🔍

  • Nanomaterials for Biosensing: MOFs, 2D materials, and green-engineered nanostructures for detecting biomarkers/pathogens.

  • Wearable Diagnostics: Microneedle-based devices for real-time health monitoring.

  • Electrochemical/Optical Sensors: Early disease detection and environmental analysis.

Awards & Honors 🏆

  • CSC Ph.D. Scholarship (2017–2020, China).

  • HUST Academic Excellence Award (2019).

  • HUST Honorary International Graduate Award (2020).

  • Provincial Merit Scholarship (Pakistan, 2012).

Publications 📜

Title: Hierarchical CNTs@CuMn Layered Double Hydroxide Nanohybrid with Enhanced Electrochemical Performance in H2S Detection from Live Cells
Authors: M Asif, A Aziz, Z Wang, G Ashraf, J Wang, H Luo, X Chen, F Xiao, H Liu
Year: 2019
Citations: 158

Title: A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination
Authors: M Asif, A Aziz, M Azeem, Z Wang, G Ashraf, F Xiao, X Chen, H Liu
Year: 2018
Citations: 138

Title: The role of biosensors in coronavirus disease-2019 outbreak
Authors: M Asif, M Ajmal, G Ashraf, N Muhammad, A Aziz, T Iftikhar, J Wang, H Liu
Year: 2020
Citations: 137

Title: Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells
Authors: A Aziz, M Asif, M Azeem, G Ashraf, Z Wang, F Xiao, H Liu
Year: 2019
Citations: 114

Title: Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review
Authors: A Aziz, M Asif, G Ashraf, M Azeem, I Majeed, M Ajmal, J Wang, H Liu
Year: 2019
Citations: 108

Title: Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids
Authors: M Asif, A Aziz, G Ashraf, Z Wang, J Wang, M Azeem, X Chen, F Xiao, …
Year: 2018
Citations: 96

Title: Tuning Electrocatalytic Aptitude by Incorporating α-MnO2 Nanorods in Cu-MOF/rGO/CuO Hybrids: Electrochemical Sensing of Resorcinol for Practical Applications
Authors: T Iftikhar, Y Xu, A Aziz, G Ashraf, G Li, M Asif, F Xiao, H Liu
Year: 2021
Citations: 89

Title: Rice-Spikelet-like Copper Oxide Decorated with Platinum Stranded in the CNT Network for Electrochemical In Vitro Detection of Serotonin
Authors: G Ashraf, M Asif, A Aziz, T Iftikhar, H Liu
Year: 2021
Citations: 87

Title: Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: a textile sensor for H2O2 detection in clinical cancer tissues
Authors: M Asif, A Aziz, G Ashraf, T Iftikhar, Y Sun, F Xiao, H Liu
Year: 2022
Citations: 76

Title: Trends in biosensing platforms for SARS-CoV-2 detection: A critical appraisal against standard detection tools
Authors: A Aziz, M Asif, G Ashraf, U Farooq, Q Yang, S Wang
Year: 2021
Citations: 58

Title: Engineering MOFs derived metal oxide nanohybrids: Towards electrochemical sensing of catechol in tea samples
Authors: T Iftikhar, A Aziz, G Ashraf, Y Xu, G Li, T Zhang, M Asif, F Xiao, H Liu
Year: 2022
Citations: 45

Title: Topical advances in nanomaterials based electrochemical sensors for resorcinol detection
Authors: T Iftikhar, M Asif, A Aziz, G Ashraf, S Jun, G Li, H Liu
Year: 2021
Citations: 45

Title: Boosting electrocatalytic activity of carbon fiber@ fusiform-like copper-nickel LDHs: Sensing of nitrate as biomarker for NOB detection
Authors: A Aziz, M Asif, G Ashraf, T Iftikhar, J Hu, F Xiao, S Wang
Year: 2022
Citations: 44

Conclusion 🌟

Dr. Ghazala Ashraf is a dynamic researcher bridging nanotechnology and diagnostics, with accolades from China and Pakistan. Her pioneering work in wearable sensors and nanomaterials holds promise for personalized medicine and environmental safety. She actively mentors students and collaborates globally, driving innovation in analytical chemistry.