Hyesung Park | Chemistry and Materials Science | Best Researcher Award

Prof. Dr. Hyesung Park | Chemistry and Materials Science | Best Researcher Award

Korea University | South Korea

Dr. Hyesung Park, a distinguished Professor at Korea University, is an internationally recognized authority in hetero-dimensional materials synthesis and their applications in functional devices, including energy harvesting, nanoelectronics, and nanophotonics. His academic journey spans world-leading institutions such as MIT, Northwestern University, and UNIST, where he has consistently advanced renewable energy technologies and next-generation device engineering. He earned his Ph.D. in Electrical Engineering and Computer Science from MIT with groundbreaking research on CVD graphene for organic photovoltaics, pioneering innovations in transparent conducting electrodes that have shaped subsequent advances in the field. Before joining Korea University, he held prestigious research and faculty positions that further strengthened his international reputation. At Korea University, Dr. Park leads pioneering work in integrative energy engineering, with research spanning hybrid nanostructures, scalable perovskite solar cells, electro/photo-catalysis, graphene-based devices, and triboelectric nanogenerators, producing notable innovations in solar cell production and energy harvesting materials. He has authored 116 Publications, accumulated 5,452 citations, and holds an impressive h-index of 36, reflecting the global impact of his scholarship. His highly cited works on graphene electrodes and hybrid solar cells have been published in top-tier journals such as Nature Nanotechnology, ACS Nano, and Advanced Energy Materials. Widely acclaimed for his leadership, impactful publications, and international collaborations, Dr. Hyesung Park is celebrated not only for advancing materials science and energy technologies but also for inspiring future scientists and engineers through his mentorship and academic contributions. Honored with national and international recognition, he exemplifies excellence in research, education, and innovation, and his pioneering contributions continue to drive breakthroughs in sustainable energy technologies that are shaping a cleaner and more efficient future.

Profile: Scopus | Google Scholar | ORCID

Featured Publications

Kim, K. K., Reina, A., Shi, Y., Park, H., Li, L. J., Lee, Y. H., & Kong, J. (2010). Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 21(28), 285205.

Park, H., Brown, P. R., Bulović, V., & Kong, J. (2012). Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Letters, 12(1), 133–140.

Park, H., Rowehl, J. A., Kim, K. K., Bulović, V., & Kong, J. (2010). Doped graphene electrodes for organic solar cells. Nanotechnology, 21(50), 505204.

Park, H., Chang, S., Zhou, X., Kong, J., Palacios, T., & Gradečak, S. (2014). Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Letters, 14(9), 5148–5154.

Park, H., Chang, S., Jean, J., Cheng, J. J., Araujo, P. T., Wang, M., Bawendi, M. G., & Kong, J. (2013). Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Letters, 13(1), 233–239.

Koo, D., Jung, S., Seo, J., Jeong, G., Choi, Y., Lee, J., Lee, S. M., Cho, Y., Jeong, M., & Park, H. (2020). Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes. Joule, 4(5), 1021–1034.

Oh, N. K., Seo, J., Lee, S., Kim, H. J., Kim, U., Lee, J., Han, Y. K., & Park, H. (2021). Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nature Communications, 12(1), 4606.

Oh, N. K., Kim, C., Lee, J., Kwon, O., Choi, Y., Jung, G. Y., Lim, H. Y., Kwak, S. K., Kim, G., & Park, H. (2019). In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours. Nature Communications, 10(1), 1723.

Joerg Florian Friedrich | Chemistry | Lifetime achievement Award

Prof. Dr. Joerg Florian Friedrich | Chemistry | Lifetime achievement Award

Technical University Berlin | Germany

Prof. Dr. Joerg Florian Friedrich is a renowned chemist born in 1948 in Erkner near Berlin. With a remarkable academic and research career spanning over five decades, he has made significant contributions to the fields of plasma chemistry, polymer composites, and surface analysis. His career includes key leadership roles in major German research institutions, and he continues to inspire as a lecturer even after his retirement.

Professional profile👤

Scopus

Strengths for the Awards✨

  • Extensive Experience: With over three decades of active engagement in teaching and research, Dr. Singh has demonstrated sustained contributions to the field of Environmental Microbiology.

  • Academic Contributions: She has a rich publication record in reputed national and international journals, showcasing the quality and impact of her research work.

  • Specialized Expertise: Her focus on environmental microbiology, a critical and evolving area of biological sciences, places her at the forefront of research related to sustainable development, environmental health, and microbial applications.

  • Mentorship and Teaching Excellence: Dr. Singh has played a pivotal role in guiding postgraduate and doctoral students, thereby shaping future generations of scientists.

  • Recognition and Involvement: Participation in conferences, collaborations, and institutional contributions add to her reputation as a leader in her domain.

🎓 Education

Prof. Friedrich began his academic journey in 1967, studying chemistry at Humboldt University Berlin. He received his Diploma in Physical Chemistry in 1972 and soon joined the German Academy of Sciences in Berlin. He earned his Dr. rer. nat. in 1974/1975 and later his Dr. sc. nat. in 1981/1982, both from the Academy of Sciences of the GDR, Berlin. His habilitation and venia legendi (teaching license) were awarded in 1991 at TH Merseburg, marking his formal recognition as an independent university teacher.

💼 Experience

Prof. Friedrich’s career reflects deep expertise and leadership in materials science. He began as Deputy Chief of the Department of Polymer Composites in 1975. He later led the Plasma Chemistry Division at the Institute of Applied Chemistry (ACA), Berlin (1991–1994). From 1995, he headed the Polymer Structure and Analysis Division and, later in 2006, the Polymer Surfaces Division at BAM (Federal Institute of Materials Research and Testing). By 1996, he was appointed Director and Professor at BAM. In 2007, he joined the Technical University of Berlin as a Professor in Material Sciences and Polymer Analysis, serving until his emeritus status in 2013, after which he remained active as a lecturer until 2024.

🔬 Research Interest On Chemistry

Prof. Friedrich’s research bridges chemistry, materials science, and engineering. He is particularly known for his pioneering work in plasma chemistry, polymer surface modification, polymer composites, and materials analysis. His contributions have not only advanced theoretical understanding but also facilitated innovations in industrial applications. His multi-disciplinary approach continues to influence new generations of researchers and practitioners in materials science.

🏅 Awards

Over the years, Prof. Friedrich has received numerous honors and held esteemed positions in academia and research. His nomination for the Award Nomination Application Form dated May 29, 2012, reflects his standing as a respected figure in the international scientific community. His ongoing academic involvement post-retirement further underlines his lifelong commitment to science and mentorship. 🏆📜

📚 Publications

Prof. Friedrich is the author of around 375 publications, including peer-reviewed journal articles, patents, books, and book chapters. His work is widely cited and has influenced many aspects of polymer and materials research. 🔗 Here’s a selected publication with details:

1. Mechanisms of Plasma Polymerization – Reviewed From a Chemical Point of View-II: Plasma Polymers With Classic Structure

  • Authors: J.F. Friedrich

  • Year: 2025

2. Plasma-Deposited Polymer Layers as Adhesion Promoters

  • Authors: J.F. Friedrich

  • Year: Not specified

  • Citations: 1

3. Competition in Adhesion between Polysort and Monosort Functionalized Polyolefin Surfaces Coated with Vacuum-Evaporated Aluminium

  • Authors: J.F. Friedrich

  • Year: Not specified

  • Citations: 1

4. Structure of plasma deposited acrylic acid-allyl alcohol copolymers

  • Authors: A.F. Fahmy, H. Omar, P. Szymoniak, A. Schönhals, J.F. Friedrich

  • Year: 2023

  • Citations: 2

5. Significance of interfacial redox reactions and formation of metal-organic complexes for the adhesion of metals on pristine and plasma-treated polymers

  • Authors: J.F. Friedrich, W.E.S. Unger, A. Lippitz, S. Weidner, G. Kühn

  • Year: Not specified

  • Citations: 12

6. Structure of plasma-deposited copolymer films prepared from acrylic acid and styrene: Part III sulfonation and electrochemical properties

  • Authors: A.F. Fahmy, M.A. Kolmangadi, A. Schönhals, J.F. Friedrich

  • Year: 2022

  • Citations: 7

7. Nonthermal plasmas for materials processing: Polymer surface modification and plasma polymerization

  • Authors: J.F. Friedrich, J. Meichsner

  • Year: Not specified

  • Citations: 1

8. Modified polyvinyl chloride membrane grafted with an ultra-thin polystyrene film: Structure and electrochemical properties

  • Authors: A.F. Fahmy, M.A.A.R. Abu-Saied, N.N. Morgan, A. Schönhals, J.F. Friedrich

  • Year: 2021

  • Citations: 11

9. One-step plasma deposited thin SiOxCy films for corrosion resistance of low carbon steel

  • Authors: A.F. Fahmy, M. ElSabbagh, M.A. Bedair, S.M. El-Bahy, J.F. Friedrich

  • Year: 2021

  • Citations: 14

10. Degradation of organic dye using plasma discharge: Optimization, pH and energy

  • Authors: A.F. Fahmy, A.H. El-Zomrawy, A.M. Saeed, H.A.H. Shehata, J.F. Friedrich

  • Year: 2020

  • Citations: 30

🔚 Conclusion

Prof. Friedrich stands as a towering figure in the field of materials science, with profound contributions to polymer chemistry and surface engineering. His work has not only shaped research paradigms but also enhanced technological capabilities in surface treatment and material interfaces. His dedication to both research and education makes him a deserving candidate for any high-level academic or scientific award.