Pratiksha Agnihotri | Nanotechnology | Best Paper Award

Dr. Pratiksha Agnihotri | Nanotechnology | Best Paper Award

Dr. Pratiksha Agnihotri is a dedicated physicist specializing in materials science, currently serving as a Project Officer at the Centre for Programmable Photonic Integrated Circuits and Systems (CPPICS) at IIT Madras, under the Ministry of Electronics and Information Technology (MeitY), Government of India. With a Ph.D. in Physics, she has authored 14 peer-reviewed international journal articles, focusing on high dielectric materials for energy storage devices. Her commitment to advancing energy storage technologies is evident in her innovative research and active engagement in academic mentorship and science outreach.

Professional profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  1. Substantive Research Output:
    With 14 peer-reviewed publications, many in high-impact journals like Ceramics International, Emergent Materials, and Ionics, Pratiksha has demonstrated consistent and relevant contributions in the field of high dielectric materials and energy storage.

  2. Innovative Research Focus:
    Her work on KNN-based metal oxide composite thin films and Mo²⁺ substituted hexaferrites addresses cutting-edge materials for energy storage applications, a critical domain in sustainability and electronics.

  3. First-Author Contributions:
    She is the first author on the majority of her published papers, indicating lead contributions in design, execution, and manuscript preparation — a key criterion for Best Paper Awards.

  4. Interdisciplinary Impact:
    Her integration of impedance spectroscopy, dielectric analysis, and material synthesis techniques bridges physics, materials science, and electronics engineering, increasing the applicability and reach of her research.

  5. Recognition through Patents:
    Filing four patents demonstrates the originality and application-oriented nature of her work, adding a commercial and innovation dimension to her academic achievements.

  6. Institutional Affiliation:
    Currently affiliated with IIT Madras under the Ministry of Electronics and Information Technology (MeitY) — a national-level Centre of Excellence — provides credibility and underscores the national relevance of her work.

🎓 Education

Dr. Agnihotri’s academic journey reflects her deep commitment to physics and materials science. She earned her Ph.D. in Material Science from Shoolini University, Himachal Pradesh, India, in December 2025, achieving a CGPA of 8.2. Her doctoral research, titled “Optimization of Theoretical & Experimental Approach of KNN – Based Metal Oxide Composite Thin Film for High Dielectric Material,” encompassed advanced material characterization, solid-state physics, and dielectric properties. Prior to this, she completed her Master of Science in Physics from Shoolini University in June 2021 with a CGPA of 7.8, and her Bachelor of Science in Physics from Himachal Pradesh University in June 2019 with a CGPA of 6.78.

💼 Experience

Dr. Agnihotri brings a wealth of experience in both research and academia. Since December 17, 2024, she has been contributing to CPPICS at IIT Madras, where she creates and delivers project presentations, updates stakeholders on milestones, and fosters strong project relationships. In January 2023, she served as a teaching assistant at Shoolini University, providing homework assistance, motivating students, and collaborating to enhance learning outcomes. Her roles demonstrate her ability to bridge complex research with effective communication and mentorship.

🔬 Research Interests On Nanotechnology

Dr. Agnihotri’s research is centered on the synthesis and characterization of advanced materials for energy applications. Her interests include:

  • Oxide, Carbonate, and Ferrite materials

  • Synthesis of nanomaterials

  • Energy storage devices

  • Solar cells

  • Thermistor applications

  • Flexible electronic devices

She is proficient in various analytical techniques such as XRD, FESEM, Raman Spectroscopy, FTIR, Dielectric Spectroscopy, Modulus, Impedance, and AC Conductivity measurements. Her expertise extends to software tools like Origin, FullProf, VESTA, and ImageJ, which she utilizes for data analysis and visualization.

🏆 Awards & Patents

Dr. Agnihotri’s innovative work has led to the filing of several patents, including:

  • Mo²⁺ substituted Ba₀.₇Gd₀.₃MoxF₁₂₋ₓO₁₉ M-type hexaferrite-based nanomaterial and its preparation process.

  • Rietveld analysis and negative dielectric behavior of perovskite-like La₁₋ₓEuxMnO₃ ceramic system.

  • Pr³⁺/Mn²⁺ doped (Bi₀.₉₅Pr₀.₀₅)(Fe₀.₉₅Mn₀.₀₅)O₃ perovskite ceramic-based nanomaterial.

  • Gd-doped (BiFeO₃–BaTiO₃) multiferroic perovskite-based nanomaterial.

  • Dy³⁺/Mn²⁺ doped (Bi₀.₉₅Dy₀.₀₅)(Fe₀.₉₅Mn₀.₀₅)O₃ perovskite ceramic-based nanomaterial.

  • LiNbO₃ composite-based perovskite system substituted on KNN ceramic nanomaterial.

These patents underscore her contributions to the development of novel materials with potential applications in energy storage and electronic devices.

📚 Publications

Dr. Agnihotri has an impressive portfolio of publications. Here are some of her notable works:

Title: Exploring the structural and electrical trends in Mo²⁺ substituted Ba₀.₇Gd₀.₃MoxF₁₂₋ₓO₁₉ Hexaferrite
Authors: P Agnihotri, A Kumar, SS Parida, S Kumari, B Singh, R Hawaldar, R Rai
Year: 2024
Citations: 6

Title: Relaxation behaviour, conductive grains and resistive boundaries of bismuth-based double perovskite Bi₂₋ₓLaₓFeGaO₆
Authors: JP Nayak, P Agnihotri, S Kumari, P Kumari, P Kumar, R Rai
Year: 2024
Citations: 5

Title: Study the structural, electrical and ferroelectric behaviour of lead-free sodium potassium niobate (KNN) ceramics in view of energy storage capacity
Authors: P Agnihotri, R Hawaldar, R Rai
Year: 2024
Citations: 5

Title: Exploring the structural characteristics and electrical conductivity of MnTiO₃ across ferroelectric and paraelectric phases
Authors: P Agnihotri, R Hawaldar, M Singh, R Rai
Year: 2024
Citations: 5

Title: Investigation of structural and electrical properties of 0.90PbMn₁/₃Nb₂/₃O₃–0.10PbTiO₃ ceramics prepared via solid-state reaction
Authors: P Agnihotri, S Kumari, P Negi, P Kumar, P Kumari, R Hawaldar, R Rai
Year: 2024
Citations: 5

Title: Structural and dielectric characterization of BiLaCoGaO₆ double perovskite ceramic using x-ray diffraction and impedance spectroscopy
Authors: P Agnihotri, JP Nayak, P Kumar, R Rai
Year: 2024
Citations: 4

Title: Exploring impedance and modulus response of cobalt titanate in ferroelectric phase
Authors: NP Yadav, P Agnihotri, R Rai
Year: 2025
Citations: 3

Title: A comprehensive review of bismuth, lanthanum and strontium based double perovskites− Unravelling structural, magnetic, and dielectric properties
Authors: J Parsadnayak, R Jasrotia, A Kumarsharma, A Kandwal, P Agnihotri, …
Year: 2024
Citations: 3

Title: Synergistic effect of self-poled fibre based flexible lead-free KNN/P(VDF-HFP) nanofiber mat for scavenging piezoelectric energy
Authors: MSSK Gun Anit Kaur, Pratiksha
Year: 2022
Citations: 3

Title: Investigation of dielectric transitions and impedance behavior in solid solutions of (1–x) K₀.₄₁Na₀.₅₉Nb₀.₉₅₉Sb₀.₀₄₁O₃–x (Bi₀.₅K₀.₅TiO₃)
Authors: R Rai, P Agnihotri, S Kumari, M Dutta
Year: 2024
Citations: 2

Title: A spectroscopic ellipsometry study of TiO₂:ZrO₂ on TiN/Si thin films prepared by Chemical Beam Vapor Deposition
Authors: P Agnihotri, A Verma, A Saini, R Rani, W Maudez, E Wagner, G Benvenuti, …
Year: 2024
Citations: 2

✅ Conclusion

Dr. Pratiksha Agnihotri exemplifies the integration of rigorous scientific research with practical applications in energy storage and materials science. Her extensive academic background, combined with her hands-on experience in research and teaching, positions her as a valuable contributor to the scientific community. Her work not only advances the field of high dielectric materials but also inspires future innovations in sustainable energy solutions.

Yidan Liu | Nanomaterials | Best Researcher Award

Assist. Prof. Dr. Yidan Liu | Nanomaterials | Best Researcher Award

Zhejian Sci-Tech University | College of Textile Science and Engineering (International Institute of Silk) | China

Yidan Liu is a Lecturer at the Zhejiang Sci-Tech University, specializing in Materials Science and Engineering. He earned his Doctor of Engineering in Materials Science and Engineering from Shanghai University in 2023, after completing his Master’s in Engineering from Zhejiang Sci-Tech University in 2018. He has conducted research as an exchange student at The Hong Kong Polytechnic University in 2017. Liu’s work focuses on the photo deposition synthesis of nanomaterials for electrocatalysis applications, with a particular emphasis on hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO2RR).

Profile

Orcid

Strengths for the Awards

  • Innovative Research: Liu has developed groundbreaking strategies for the synthesis of nanomaterials using photodeposition techniques, which have wide applications in electrocatalysis (e.g., hydrogen evolution reaction and carbon dioxide reduction).
  • High-Impact Publications: Liu’s work has been published in high-impact journals such as ACS Nano and Materials Horizons, showcasing his contributions to material science, particularly in the development of bimetallic core-shell nanocrystals and their electrocatalytic properties.
  • Multinational Collaboration: He has worked in collaboration with top research institutions like Sharif University of Technology, Fudan University, and The Hong Kong Polytechnic University, demonstrating a strong international research network.
  • Strong Technological Expertise: Liu has mastered several advanced techniques such as TEM, SEM, XPS, and electrochemical workstations, which support his innovative research. His patent portfolio also reflects his ability to translate research into practical applications.

Education 📚

Yidan Liu holds a Doctor of Engineering in Materials Science and Engineering from Shanghai University (2019–2023). He also completed his Master’s in Engineering from Zhejiang Sci-Tech University (2015–2018). During his academic journey, he participated as an exchange student at The Hong Kong Polytechnic University in 2017. His research interests span materials chemistry, nanomaterials, and electrocatalysis.

Experience

Yidan Liu currently serves as a Lecturer at Zhejiang Sci-Tech University since November 2023. Prior to this, he pursued his doctoral studies at Shanghai University, where his research focused on the photodeposition synthesis of nanomaterials. Liu has gained experience working with several prestigious institutions, including collaborations with Sharif University of Technology and Dalian Institute of Chemical Physics. He has also contributed to numerous peer-reviewed publications in well-regarded scientific journals.

Research Interests 🔬

Yidan Liu’s research primarily revolves around the synthesis and application of nanomaterials in electrocatalysis. His key focus areas include the design and development of metal nanocrystals, specifically through photodeposition methods, for applications in hydrogen evolution and CO2 reduction reactions. His research also involves the fabrication of bimetallic core-shell nanostructures and the exploration of their electrocatalytic performance.

Awards 🏆

Liu has been recognized for his academic excellence with several honors, including the National Inspirational Scholarship, Outstanding Class Cadre, Merit Student, and Outstanding Graduate awards. These accolades reflect his dedication to research and his contribution to advancing materials science.

Publications 📑

Yidan Liu has authored numerous peer-reviewed publications in high-impact journals, contributing significantly to the fields of materials science and nanotechnology. Notable publications include:

  1. Liu Y., Ji Y., et al. “A surfactant-free and general strategy for the synthesis of bimetallic core-shell nanocrystals on rGO through the targeted photodeposition.” ACS Nano, 2023, 17, 15, 15085−15096. DOI link
  2. Liu, Y., Yodsin N., et al. “Photochemical engineering unsaturated Pt islands on supported Pd nanocrystals for a robust pH-universal hydrogen evolution reaction.” Materials Horizons, 2024, 11, 8, 1964−1974.
  3. Liu Y., Naseri A., et al. “Shape-controlled photochemical synthesis of noble metal nanocrystals based on reduced graphene oxide.” ACS Applied Materials & Interfaces, 2022, 14, 14, 16527−16537.
  4. Liu, Y., Ren, X., et al. “The lattice mismatch-driven photochemical self-assembly of supported heterostructures for stable and enhanced electrocatalytic carbon dioxide reduction reaction.” Molecules, 2024, 29, (23), 5560.
  5. Liu Y., Fu K., et al. “Supercritical CO2 extraction for the determination of tetrachloroethylene residues in dry-cleaned apparel.” Analytical Methods, 2018, 10, 19, 2242−2250.

Conclusion

Yidan Liu is a highly dedicated researcher and educator in the field of materials science, with a focus on nanomaterial synthesis and electrocatalysis. His work continues to push the boundaries of materials chemistry, specifically in the development of advanced strategies for electrocatalytic reactions. Liu’s contributions to the field have been widely recognized, and he remains committed to furthering research in nanomaterials and sustainable energy solutions.