Guanyue Sun | Advanced Materials Engineering | Young Scientist Award

Dr. Guanyue Sun | Advanced Materials Engineering | Young Scientist Award

Dezhou university | China

Dr. Guanyue Sun is an emerging scholar in the field of electrical engineering, known for his expertise in high voltage electricity, insulation technology, and smart grid systems. His professional journey has been marked by dedication to both teaching and advanced research, contributing valuable insights to the development of power systems that are more reliable, efficient, and sustainable. As a lecturer and active researcher, he has consistently demonstrated a capacity to bridge theoretical knowledge with applied engineering solutions. His involvement in academic societies, editorial boards, and collaborative projects positions him as a young leader whose work is shaping the future of electrical engineering.

Professional Profile

Scopus

ORCID

Education

Dr. Guanyue Sun pursued a Master’s degree in Electrical Engineering at Xinjiang University, where he developed a strong foundation in power electronics, circuit analysis, and high-voltage technology. He later completed his doctoral studies at the School of Electrical and Electronics at Shandong University of Technology, where his research centered on advanced materials for power systems, smart grid design, and surge arrester technology. His academic training instilled in him both technical depth and a broad perspective, preparing him to address complex challenges in modern energy infrastructure.

Experience

As a lecturer at Texas College, Dr. Guanyue Sun integrates academic teaching with cutting-edge research, ensuring that his students are exposed to both classical engineering principles and the latest advancements in the field. He has led and contributed to several research projects, including studies on ZnO varistors, non-destructive testing of cable accessories, and surge arrester performance in UHV DC systems. His service extends beyond teaching; he is an active member of the China Electrotechnical Society and professional committees on industrial robotics and intelligent equipment. His editorial work with young boards of respected journals highlights his commitment to fostering academic exchange and advancing scholarly communication.

Research Interests

Dr. Guanyue Sun’s research interests cover a wide range of topics within electrical engineering and materials science. He is particularly engaged in the study of high-gradient low-residual voltage surge arresters and their applications in UHV DC networks. His work explores new materials for ZnO varistors to improve smart grid arresters, fault characteristics in high-voltage power cables, and innovative methods for online detection of ground transformer operating conditions. He has also delved into the analysis of insulation shielding in high-voltage cables, silicone rubber composites for DC applications, and novel nanogenerator materials. His investigations reveal a multidisciplinary approach, integrating power systems, materials engineering, and computational modeling.

Awards

Dr. Guanyue Sun has received recognition for his innovative research and technical contributions, which address critical challenges in electrical insulation and smart grid systems. His scientific achievements and patents demonstrate not only originality but also practical application, serving both academic and industrial needs. The Young Scientist Award nomination reflects his growing influence in the field, recognizing his ability to combine theoretical rigor with practical problem-solving. This honor underscores his potential as a next-generation leader in electrical engineering research.

Publications

Dr. Guanyue Sun has authored several influential publications in high-impact international journals, each contributing to the advancement of electrical engineering and materials science. His works include:

  • Tittle: Influences of storage pool on strain and mechanical uniformity of Mg-Gd-Y-Zn-Zr sheet produced by rotary forward extrusion
    Published on: 2025

  • Tittle: Effect of laminate channel width on the performance of MgAl-layered double hydroxide film-based nanogenerators driven by water evaporation
    Published on: 2025

  • Tittle: Study of the Effect of Ca on the Electrical Properties of SnO2 Varistor Based on the Voronoi Model
    Published on: 2024

  • Tittle: Simulation on paraffin melting enhancement in shell-tube phase change thermal storage equipment induced by natural convection
    Published on: 2024

  • Tittle: Numerical modeling and simulation of the flow drill screw process for joining A365 and A6N01 multi-material joints
    Published on: 2023

  • Tittle: Liquid phase sintering of SnO2 varistors for stability improvement
    Published on: 2023

  • Tittle: Improving Stability and Low Leakage Current of ZnO Varistors Ceramics
    Published on: 2023

Conclusion

Through his research, teaching, patents, and active engagement in professional societies, Dr. Guanyue Sun has established himself as a forward-looking scholar with a deep commitment to advancing electrical engineering. His work contributes to both academic knowledge and industrial application, addressing pressing challenges in power grid reliability, material stability, and high-voltage system safety. His nomination for the Young Scientist Award is a testament to his achievements, his innovative spirit, and his potential to make lasting contributions to global energy and engineering solutions.

Valery Zakharov | Chemical Engineering | Excellence in Research Award

Dr. Valery Zakharov | Chemical Engineering | Excellence in Research Award

Lomonosov Moscow State University | Russia

Dr. Valeriy Zakharov is a distinguished scientist whose career demonstrates a lifelong commitment to advancing the chemical sciences. His pioneering studies in coordination chemistry, spectroscopy, and photophysical processes have shaped the understanding of molecular structures and photoactive systems. Throughout his career, he has collaborated with leading researchers, delivered influential conference presentations, and authored numerous impactful publications. His research stands at the intersection of fundamental science and applied innovation, making him one of the most respected contributors to the global scientific community.

Professional Profile

Scopus

Google Scholar

ORCID

Education

Dr. Valeriy Zakharov pursued his higher education in chemistry at Lomonosov Moscow State University, where he specialized in physical and inorganic chemistry. His graduate research was devoted to coordination compounds and their photophysical behavior in complex environments. During his doctoral training, he mastered advanced spectroscopic techniques and theoretical approaches, providing him with the expertise to investigate light-sensitive systems and molecular structures. The strong academic foundation he established at the university became the cornerstone of his later achievements in both theoretical and experimental chemistry.

Experience

In his professional career, Dr. Valeriy Zakharov has held teaching and research responsibilities at Lomonosov Moscow State University, where he consistently combined academic rigor with scientific creativity. His early work focused on electron microscopy of silver halide systems, exploring the mechanisms of latent image formation in photographic materials. He later expanded his research into optically detected magnetic resonance and low-temperature phosphorescence of coordination compounds, broadening the scope of spectroscopic studies. He has been actively involved in both national and international collaborations, ensuring that his findings reached a global audience and promoting cross-disciplinary scientific exchange.

Research Interests

Dr. Valeriy Zakharov’s research interests cover a wide spectrum of modern chemistry. He has dedicated much of his work to understanding the structural and photophysical properties of coordination compounds, with special attention to the triplet states of transition metal complexes. His investigations of silver halide systems provided new insights into photographic sensitivity, image formation, and the fundamental processes of photochemistry. He has also made significant contributions to optically detected magnetic resonance spectroscopy and its applications to metal complexes and rare-earth elements. In addition, his studies on surface-enhanced Raman scattering have advanced the understanding of molecular interactions on colloidal silver surfaces, creating new opportunities for nanomaterials research and applied spectroscopy.

Awards

Dr. Valeriy Zakharov has been widely recognized for his exceptional contributions to chemistry and spectroscopy. His innovative approaches to studying photoactive materials and the development of advanced spectroscopic techniques have earned him high regard in both academic and applied sciences. The nomination for the Excellence in Research Award in Scientific Research highlights his lasting influence, his role in advancing scientific knowledge, and his dedication to training and inspiring the next generation of chemists.

Publications

Dr. Valeriy Zakharov has authored numerous scholarly works that have advanced the fields of spectroscopy, coordination chemistry, and photophysics. His publications include influential articles in highly respected journals and collaborative studies with leading scientists. A few notable examples include:

  • Surface-enhanced raman scattering of 2, 2′-bipyridine adsorbed on colloidal silver and stabilized AgBr sols
    Journal of Colloid and Interface Science
    Published on: 1993
    Citation: 42

  • Surface tension of silver in different media
    Journal of Physics and Chemistry of Solids
    Published on: 1993
    Citation: 29

  • Photoluminescent silicon nanocrystals stabilized by ionic liquid
    Journal of Nanoparticle Research
    Published on: 2011
    Citation: 24

  • Low-temperature phosphorescence and ODMR study of 2, 2′-bipyridine and Rh (bpy) 3+ 3
    Chemical Physics Letters
    Published on: 1987
    Citation: 23

  • The crystal and molecular structure of complex Gd (NO3)(phen) 2
    Russian Journal of Coordination Chemistry
    Published on: 1991
    Citation: 22

  • Stabilization of silicon nanoparticles by carbenes
    Russian Journal of Coordination Chemistry
    Published on: 2010
    Citation: 20

  • The isolated flat silicon nanocrystals (2D structures) stabilized with perfluorophenyl ligands
    Journal of Nanoparticle Research
    Published on: 2014
    Citation: 18

Conclusion

Dr. Valeriy Zakharov has dedicated his career to advancing the chemical sciences, producing research that is both pioneering and enduring in its influence. His work has provided clarity to complex spectroscopic phenomena, expanded the knowledge of photoactive coordination compounds, and opened new avenues in photochemistry and nanomaterials. His dedication to scientific excellence, collaborative spirit, and prolific contributions make him a highly deserving candidate for the Excellence in Research Award in Scientific Research at Lomonosov Moscow State University.