Xinxin Wang | Engineering | Best Researcher Award

Mr. Xinxin Wang | Engineering | Best Researcher Award

North China Electric Power University | China

Xinxin Wang is a driven and innovative PhD candidate at North China Electric Power University, whose work bridges advanced theoretical research with practical engineering solutions. With a strong foundation in machinery and power engineering, he has developed expertise in the design, analysis, and optimization of underground tunneling equipment, particularly Tunnel Boring Machines (TBMs). His career reflects a deep commitment to solving complex challenges in rock mechanics and engineering, supported by collaborative efforts with leading experts in China and abroad. His predictive models and design methods have significantly advanced tunneling efficiency, making him a promising leader in his field.

Professional Profile

Scopus

ORCID

Education

Xinxin Wang earned a Master’s degree in Machinery and Engineering from Inner Mongolia University of Science and Technology, followed by doctoral studies in Power Machinery and Engineering at North China Electric Power University. Selected for the prestigious National “Excellent Engineer Program,” he broadened his academic exposure through a joint doctoral program as a visiting scholar at the University of Pisa, Italy. This international engagement allowed him to integrate advanced European engineering practices with domestic innovation, enriching his academic and professional capabilities in tunneling technology and rock-breaking mechanics.

Experience

Xinxin Wang has actively participated in multiple national-level research projects, including those funded by the National Natural Science Foundation of China and the National High Technology Research and Development Program. His contributions extend to the development of proprietary software for calculating rock-breaking forces in TBM disc cutters and the creation of new cutterhead designs capable of handling varied geological conditions. He works closely with industry and academic partners to ensure his research outcomes are implemented in real-world projects, thus enhancing the efficiency, reliability, and cost-effectiveness of large-scale underground excavation.

Research Interest

His research focuses on intelligent control systems and energy efficiency analysis for advanced underground construction equipment, particularly TBMs. He is deeply engaged in studying the collaborative rock-breaking mechanism of disc cutters, developing predictive models for cutter forces and cutterhead torque, and designing innovative solutions to optimize performance in diverse geological settings. Additionally, his expertise spans rock mechanics, structural analysis, and the integration of advanced computational modeling techniques into engineering practice.

Awards

Xinxin Wang has received recognition for his scholarly achievements through competitive doctoral scholarships and honors for academic excellence. His innovative contributions to TBM rock-breaking mechanics, cutterhead design, and excavation efficiency have been widely acknowledged in professional circles. These recognitions underscore his potential to make sustained and transformative contributions to the tunneling and underground engineering sector, making him a strong candidate for the Best Researcher Award.

Publications

Title: Investigation into the Rock-Breaking Forces of TBM Disc Cutters with Diverse Edge Shapes
Journal: Rock Mechanics and Rock Engineering
Published on: 2025

Title: Study on the Rock-Breaking Forces of TBM Disc Cutters with Uneven Wear
Journal: Chinese Journal of Theoretical and Applied Mechanics
Published on: 2025

Title: Study on Fatigue Characteristics of High-Pressure Vessel with Multiple Cracks in Stages
Journal: Mechanical Design and Manufacturing
Published on: 2024

Title: Allowable Limit of Crack Defect Zone Evaluation under Expected Life of Ultra-high Pressure Vessel Head
Journal: Thermal Processing Technology
Published on: 2024

Conclusion

By combining theoretical innovation with real-world engineering solutions, Xinxin Wang has made impactful contributions to the science and technology of tunnel boring and underground excavation. His research has not only improved operational efficiency but has also reduced construction costs and enhanced safety in challenging environments. With proven academic excellence, international collaboration experience, and a strong record of published work, he exemplifies the qualities of a dedicated and forward-thinking researcher worthy of the Best Researcher Award.

Jinguo Han | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jinguo Han | Engineering | Best Researcher Award

Shandong University of Technology | China

Dr. Jinguo Han is a distinguished Associate Professor at the School of Mechanical Engineering, Shandong University of Technology. He has built a prolific career in mechanical and mechatronic engineering, with extensive contributions to advanced materials processing, surface modification, and high-precision manufacturing. His innovative research bridges academia and industry, providing impactful solutions in aerospace, automotive, and biomedical fields.

Professional profile👤

Scopus

ORCID

Strengths for the Awards✨

Dr. Jinguo Han stands out as a pioneering researcher in the field of advanced materials processing and ultra-precision manufacturing. With a Ph.D. in Mechanical Engineering and a rapid academic progression to Associate Professor at Shandong University of Technology, his career demonstrates an impressive blend of theoretical rigor and technological innovation. His interdisciplinary research—ranging from ultrasonic rolling, laser-assisted machining, to multi-dimensional vibration-assisted processing—has direct applications in aerospace, biomedical, and automotive industries, reflecting real-world impact.

Dr. Han has authored more than 10 high-impact publications in leading journals like IEEE Transactions on Industrial Electronics, Materials & Design, and Micromachines. Notably, several of these are first-author or corresponding-author papers, reflecting his independent leadership in research. His work is not only academically relevant but also highly applied, evidenced by eight national patents and consistent grant acquisition, including funding from NSFC and provincial bodies.

🎓 Education

Dr. Han earned his Ph.D. in Mechanical Engineering from Changchun University of Technology (2015–2018), preceded by a Master’s in Mechatronic Engineering from the same institution (2012–2015). His academic journey began with a Bachelor’s in Mechatronic Engineering at Heze University (2008–2012). His education laid a solid foundation for multidisciplinary research across engineering and material sciences. 🎓

💼 Experience

Since July 2023, Dr. Han serves as an Associate Professor at Shandong University of Technology. Prior to this, he was a Lecturer at the same institution (2018–2023). His academic leadership is evident through successful mentorships, extensive project coordination, and laboratory development in manufacturing processes and simulation.

🔬 Research Interests On Engineering

Dr. Han’s research revolves around ultra-precision machining, nanomachining, laser-assisted processes, and microstructure formation. He explores cutting of hard and brittle materials, vibration-assisted technologies, surface integrity, materials characterization, and innovative tool design. His work consistently pushes the boundaries of micro-manufacturing, benefiting cutting-edge industrial applications. 🛠️

🏆 Awards and Grants

Dr. Han has secured prestigious national and provincial-level research grants, including from the National Natural Science Foundation of China, Shandong Provincial Department of Education, and the China Postdoctoral Science Foundation. These honors underscore his leadership in low-damage machining, vibration modulation, and laser-elliptical cutting.

📚 Publications

Dr. Han has published numerous impactful articles in peer-reviewed journals. Here are selected works:

  1. Finite element investigation on shear deformation and cutting force for elliptical vibration cutting Ti6Al4V alloyThe International Journal of Advanced Manufacturing Technology, 2025 (Cited by 10+)

  2. Molecular dynamics simulation of material removal in monocrystalline siliconJournal of Mechanical Science and Technology, 2025 (Cited by 5+)

  3. Multi-objective design of a tri-axial servo cutting systemJournal of Manufacturing Processes, 2022, 84:1133–1149 (Cited by 22)

  4. Hierarchical micro/nano structures via piezoelectric systemMaterials & Design, 2022, 224 (Cited by 35)

  5. Investigation of cutting force in 3D elliptical vibrationMicromachines, 2022, 13(8) (Cited by 18)

  6. Development of grinding tool with flexible compositeMaterials and Manufacturing Processes, 2020, 36(4): 479–487 (Cited by 16)

  7. Optimization of elliptical vibration-assisted cutting systemIEEE Transactions on Industrial Electronics, 2019, 66(2): 1151–1161 (Cited by 41)

  8. Piezoelectric tool actuator for vibration cuttingPiezoelectric Actuators, IntechOpen, 2022 (Cited by 9)

  9. Three-dimensional vibration turning deviceMicromachines, 2017, 8(10) (Cited by 13)

  10. Piezoelectric actuator for elliptical vibration turningSmart Materials and Structures, 2017, 26(8) (Cited by 19)

  11. Predictive model of cutting force in vibration cuttingInternational Journal of Mechanical Sciences, 2016, 117: 43–52 (Cited by 27)
    📖

📄 Conclusion

Dr. Jinguo Han is a visionary in mechanical and precision engineering. Through groundbreaking research, 11+ peer-reviewed articles, multiple patents, and successful projects, he exemplifies excellence in high-impact academic innovation. His work continues to shape future technologies in precision manufacturing, and his nomination for a prestigious research award is highly merited.