Guruswamy K. P | Engineering | Best Researcher Award

Dr. Guruswamy K. P | Engineering | Best Researcher Award

University of Visvesvaraya College of Engineering | India

Dr. Guruswamy K. P. is an Associate Professor in the Department of Electrical Engineering at the University of Visvesvaraya College of Engineering (UVCE), Bengaluru. He is widely recognized for his expertise in power electronics, particularly in the modeling and control of advanced power converter systems. His professional journey reflects a blend of academic teaching and innovative research, enabling him to contribute to both the classroom and the wider engineering community. Through his dedicated work, he has advanced the design of compact, efficient, and reliable power converters, making a significant impact on electric vehicle charging systems, renewable energy integration, and smart power management technologies.

Professional Profile

Google Scholar

Education

Dr. Guruswamy K. P began his academic journey at the University of Visvesvaraya College of Engineering, where he earned both his Bachelor’s and Master’s degrees in Electrical Engineering. His early academic training laid a strong foundation in fundamental engineering principles while also sparking his interest in power conversion systems. He further strengthened his expertise by pursuing doctoral research at the Indian Institute of Technology Roorkee, where he specialized in advanced control and modeling of DC–DC converters and resonant converters. This educational progression provided him with a comprehensive balance of theory, practical knowledge, and research skills that continue to influence his work today.

Experience

Over the course of his professional career, Dr. Guruswamy K. P has accumulated extensive teaching and research experience. He began with faculty positions in engineering institutions before advancing to his current role as Associate Professor at UVCE. In this position, he has not only taught core electrical engineering courses but has also supervised research projects and guided students in innovative converter design. He has contributed to the development of laboratory infrastructure, collaborative research initiatives, and academic curricula that integrate emerging topics such as digital control, interleaved converter systems, and sustainable energy applications. His leadership extends beyond teaching, as he regularly collaborates with researchers from leading institutions on interdisciplinary projects.

Research Interest

Dr. Guruswamy K. P research interests lie in the broad area of power electronics, with a specific focus on resonant converters, interleaved DC–DC converters, bidirectional converters, PWM rectifiers, and digital control strategies. He is particularly interested in applying analytical methods and computational modeling to improve the efficiency, reliability, and adaptability of converter technologies. His research often bridges theoretical modeling with practical implementation, which is especially evident in applications such as electric vehicle charging systems, auxiliary power units, and renewable energy integration. By combining modern control approaches with traditional converter design, he continues to drive advancements in sustainable energy systems and high-performance power management solutions.

Awards

Dr. Guruswamy K. P has been consistently recognized for his academic excellence, research contributions, and professional commitment. His innovative work in the field of power converters has earned him appreciation within the engineering community, and his nomination for the Best Researcher Award reflects his sustained achievements in both research and teaching. His professional memberships with ISTE and IEEE further highlight his active involvement in knowledge dissemination and collaboration, underscoring his contributions to advancing power electronics at both national and international levels.

Publications

Dr. Guruswamy K. P has authored and co-authored multiple publications in reputed international journals and conferences. His research spans topics such as digital control methods, resonant LLC converters, bidirectional DC–DC converters, and PWM rectifier applications. Selected works include:

1. Title: Modelling of flyback converter using state space averaging technique
Journal: 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (ICECCT)
Published on: 2015
Citation: 34

2. Title: Design, modeling and analysis of two level interleaved boost converter
Journal: 2013 International Conference on Machine Intelligence and Research Advancement (ICMIRA)
Published on: 2013
Citation: 31

3. Title: Design, Modelling, Analysis and Implementation of Two Phase Interleaved Buck DC-DC Converter
Journal: International Journal of Innovative Science and Research Technology
Published on: 2018
Citation: 8

4. Title: FPGA based 2-stage power conditioning system for PV power generation
Journal: 2013 International Conference on Power, Energy and Control (ICPEC)
Published on: 2013
Citation: 8

5. Title: Design and implementation of two phase interleaved DC-DC boost converter with digital PID controller
Journal: International Journal of Electrical and Electronics Engineering (IJEEE)
Published on: 2013
Citation: 8

6. Title: Performance Analysis for LLC Resonant Converter in Electric Vehicle Applications
Journal: 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC)
Published on: 2023
Citation: 4

7. Title: Performance Analysis of Half-Bridge LC Resonant Converter for UPS Battery Charging Application
Journal: 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC)
Published on: 2023
Citation: 3

Conclusion

Dr. Guruswamy K. P. stands out as a dedicated academic and researcher in the field of power electronics. His educational background, teaching experience, and innovative research collectively illustrate his strong commitment to advancing the field of converter technology. Through his publications, collaborations, and professional memberships, he has consistently contributed to both theoretical and applied aspects of electrical engineering. His nomination for the Best Researcher Award acknowledges not only his scholarly achievements but also his role in shaping the next generation of engineers and promoting sustainable energy solutions through advanced power electronics.

Xinxin Wang | Engineering | Best Researcher Award

Mr. Xinxin Wang | Engineering | Best Researcher Award

North China Electric Power University | China

Xinxin Wang is a driven and innovative PhD candidate at North China Electric Power University, whose work bridges advanced theoretical research with practical engineering solutions. With a strong foundation in machinery and power engineering, he has developed expertise in the design, analysis, and optimization of underground tunneling equipment, particularly Tunnel Boring Machines (TBMs). His career reflects a deep commitment to solving complex challenges in rock mechanics and engineering, supported by collaborative efforts with leading experts in China and abroad. His predictive models and design methods have significantly advanced tunneling efficiency, making him a promising leader in his field.

Professional Profile

Scopus

ORCID

Education

Xinxin Wang earned a Master’s degree in Machinery and Engineering from Inner Mongolia University of Science and Technology, followed by doctoral studies in Power Machinery and Engineering at North China Electric Power University. Selected for the prestigious National “Excellent Engineer Program,” he broadened his academic exposure through a joint doctoral program as a visiting scholar at the University of Pisa, Italy. This international engagement allowed him to integrate advanced European engineering practices with domestic innovation, enriching his academic and professional capabilities in tunneling technology and rock-breaking mechanics.

Experience

Xinxin Wang has actively participated in multiple national-level research projects, including those funded by the National Natural Science Foundation of China and the National High Technology Research and Development Program. His contributions extend to the development of proprietary software for calculating rock-breaking forces in TBM disc cutters and the creation of new cutterhead designs capable of handling varied geological conditions. He works closely with industry and academic partners to ensure his research outcomes are implemented in real-world projects, thus enhancing the efficiency, reliability, and cost-effectiveness of large-scale underground excavation.

Research Interest

His research focuses on intelligent control systems and energy efficiency analysis for advanced underground construction equipment, particularly TBMs. He is deeply engaged in studying the collaborative rock-breaking mechanism of disc cutters, developing predictive models for cutter forces and cutterhead torque, and designing innovative solutions to optimize performance in diverse geological settings. Additionally, his expertise spans rock mechanics, structural analysis, and the integration of advanced computational modeling techniques into engineering practice.

Awards

Xinxin Wang has received recognition for his scholarly achievements through competitive doctoral scholarships and honors for academic excellence. His innovative contributions to TBM rock-breaking mechanics, cutterhead design, and excavation efficiency have been widely acknowledged in professional circles. These recognitions underscore his potential to make sustained and transformative contributions to the tunneling and underground engineering sector, making him a strong candidate for the Best Researcher Award.

Publications

Title: Investigation into the Rock-Breaking Forces of TBM Disc Cutters with Diverse Edge Shapes
Journal: Rock Mechanics and Rock Engineering
Published on: 2025

Title: Study on the Rock-Breaking Forces of TBM Disc Cutters with Uneven Wear
Journal: Chinese Journal of Theoretical and Applied Mechanics
Published on: 2025

Title: Study on Fatigue Characteristics of High-Pressure Vessel with Multiple Cracks in Stages
Journal: Mechanical Design and Manufacturing
Published on: 2024

Title: Allowable Limit of Crack Defect Zone Evaluation under Expected Life of Ultra-high Pressure Vessel Head
Journal: Thermal Processing Technology
Published on: 2024

Conclusion

By combining theoretical innovation with real-world engineering solutions, Xinxin Wang has made impactful contributions to the science and technology of tunnel boring and underground excavation. His research has not only improved operational efficiency but has also reduced construction costs and enhanced safety in challenging environments. With proven academic excellence, international collaboration experience, and a strong record of published work, he exemplifies the qualities of a dedicated and forward-thinking researcher worthy of the Best Researcher Award.

Shushen Ye | Engineering | Best Researcher Award

Mr. Shushen Ye | Engineering | Best Researcher Award

Huaqiao University – Xiamen Campus | China

Shushen Ye is a dedicated graduate student at the College of Civil Engineering, Huaqiao University, China. His academic journey reflects a focused pursuit of excellence in structural engineering, especially in the realm of vibration control. His research delves into nonlinear stochastic vibration mechanisms in high-pier structures, aiming to innovate solutions for real-world infrastructure challenges. With a strong foundation in hydraulic engineering and a keen interest in structural dynamics, Shushen Ye is poised to contribute significantly to the civil engineering research community.

Professional profile👤

ORCID

Strengths for the Awards✨

  1. Focused Research Topic: Shushen Ye is conducting research on a niche and highly relevant area—random vibration analysis and control of high-pier structures. This field has significant implications for structural safety in civil engineering, particularly in seismic and wind-prone areas.

  2. Publication in a Reputed Journal: He has successfully published a research article in the International Journal of Dynamics and Control (Springer), which is indexed and recognized in engineering fields. The publication demonstrates originality by proposing an innovative Nonlinear Energy Sink Inerter (NESI) that reduces mass requirements—an advancement over traditional vibration mitigation techniques.

  3. Clear Technical Contribution: The research contributes to solving a known engineering problem (mass inefficiency in NES) and offers potential for real-world application in structural design.

Areas for Improvement

  1. Limited Research Output: Currently, there is only one publication listed, and no record of other ongoing/completed projects, industry collaborations, or patents. This limits the evidence of sustained research productivity.

  2. Citation Metrics and Visibility: There are no details on citation indices, h-index, or broader academic reach (e.g., Google Scholar or ResearchGate profile). Building these would strengthen the nomination.

  3. Lack of Academic Engagement: There is no information on editorial roles, professional memberships, or collaborations. These are typically considered markers of engagement and recognition in the research community.

🎓 Education

Shushen Ye is currently pursuing a Master’s degree in Civil Engineering (Hydraulic Engineering) at Huaqiao University, Fujian, China, with expected graduation in 2025. His academic coursework and research training are rooted in structural analysis, dynamic response modeling, and advanced control methods for civil infrastructure.

👨‍🎓 Experience

As a graduate student, Shushen Ye has immersed himself in advanced research on the random vibration analysis and vibration control of high-pier structures. Although he has not yet been formally employed in consultancy or industry projects, his graduate work showcases a practical understanding of nonlinear energy control systems and provides significant insights into modern structural engineering problems.

🔬 Research Interest On Engineering

Shushen Ye’s primary research interests include Structural Nonlinear Stochastic Vibration and Control, particularly applied to high-pier bridge structures. His work emphasizes developing and analyzing novel energy dissipation systems, such as the Nonlinear Energy Sink Inerter (NESI), which demonstrates promise in enhancing vibration suppression with reduced mass requirements compared to traditional systems.

🏅 Award

Shushen Ye is nominated for the Best Researcher Award in recognition of his novel contribution to vibration control strategies in civil engineering. His work on the NESI system introduces a significant improvement in structural safety, marking an impactful beginning to his research career. This nomination underscores his potential to be a future leader in the field of structural dynamics and earthquake engineering.

📚 Publication

Shushen Ye has authored a research article in the International Journal of Dynamics and Control (Springer, 2025), titled “Vibration suppression of high-pier structures using NESI: A nonlinear approach”. This paper explores an innovative approach using the Nonlinear Energy Sink Inerter (NESI) and its effectiveness in controlling lateral vibrations of tall structures.
🔗 Read the full article here
📌 Cited by: The paper is newly published and is yet to accumulate citations, but its relevance to earthquake-resistant design makes it a valuable future reference.

🧩 Conclusion

Shushen Ye stands out as a young, enthusiastic researcher whose innovative contributions to structural vibration control are commendable. His dedication to solving complex civil engineering challenges through analytical modeling and energy-efficient systems highlights his commitment to sustainable infrastructure development. This award nomination is a testament to his academic promise and emerging impact in the field.