Zhen Zhang | Chemistry and Materials Science | Best Researcher Award

Prof. Dr. Zhen Zhang | Chemistry and Materials Science | Best Researcher Award

Northwestern Polytechnical University | China

Dr. Zhen Zhang is a distinguished Professor and Doctoral Supervisor at the School of Materials Science and Engineering, Northwestern Polytechnical University. He earned his Ph.D. from the University of Waterloo, Canada, and subsequently held roles as a Postdoctoral Fellow and Senior Researcher at the same institution. Recognized as a Shaanxi Province High-Level Talent, Young Talent of Xi’an Association for Science and Technology, and Aoxiang Overseas Scholar, Prof. Zhang is a leading researcher in the field of energy electrocatalysis, with more than 5,500 citations, 14 ESI highly cited papers, and an H-index of 38.

Professional profile👤

Google Scholar

ORCID

Strengths for the Awards✨

Prof. Zhen Zhang exemplifies excellence in materials science and energy electrocatalysis. With a Ph.D. from the University of Waterloo and a robust academic trajectory, he has made pioneering contributions to confined electrocatalytic materials. His exceptional research productivity—over 50 SCI-indexed publications, including in top-tier journals like JACS, Advanced Materials, and Angewandte Chemie—alongside 14 ESI Highly Cited Papers, H-index of 38, and 5,500+ citations, clearly demonstrate profound scientific influence. His leadership in 16 competitive research projects, including national and industrial collaborations, speaks to both his technical depth and applied impact. Furthermore, his involvement in prestigious international collaborations and multiple editorial roles solidify his standing as a thought leader in his field.

🎓 Education

Prof. Zhang pursued his doctoral studies at the University of Waterloo, Canada, where he specialized in electrocatalytic materials and energy systems. His academic foundation laid the groundwork for innovative research in CO₂ reduction, hydrogen production, and advanced battery technologies. His global educational exposure significantly enhances his scientific perspective.

🧪 Experience

Prof. Zhang has a rich and varied research background, including appointments as a Postdoctoral Fellow and Senior Researcher at the University of Waterloo before returning to China. He now serves as a full Professor at Northwestern Polytechnical University, where he leads multiple national and provincial-level research initiatives. His industrial consultancy includes a 30 million RMB project on fuel cell power generation.

🔬 Research Interests On Chemistry and Materials Science

Prof. Zhang’s research centers on energy electrocatalytic materials and devices, especially focusing on CO₂ reduction reactions (CO₂RR), oxygen/hydrogen evolution and reduction reactions (OER/ORR, HER/HOR). His work facilitates the development of fuel cells, electrolyzers, and metal-air batteries for sustainable energy production ⚡. His innovations in confined electrocatalytic systems are advancing next-generation energy devices.

🏆 Awards

Prof. Zhang has received numerous prestigious honors, including the Advanced Materials Award from the International Association of Advanced Materials, Canadian Mitacs Accelerate Award, and the Chinese Government Award for Outstanding Self-Financed Students Abroad. He is also a Fellow of the Chinese Chemical Society and Chinese Materials Research Society. These accolades underscore his contributions to materials science and global energy sustainability 🌟.

📚 Publications

  • Microporous framework membranes for precise molecule/ion separations
    H. Dou, M. Xu, B. Wang, Z. Zhang, G. Wen, Y. Zheng, D. Luo, L. Zhao, A. Yu, …
    Year: 2021 | Citations: 285

  • Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries
    D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, …
    Year: 2021 | Citations: 279

  • Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO₂
    J. Zhu, M. Xiao, D. Ren, R. Gao, X. Liu, Z. Zhang, D. Luo, W. Xing, D. Su, A. Yu, …
    Year: 2022 | Citations: 244

  • Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb₂O₅–x nanocluster toward superior Li–S performance
    D. Luo#, Z. Zhang# (co-first author), G. Li, S. Cheng, S. Li, J. Li, R. Gao, M. Li, …
    Year: 2020 | Citations: 237

  • Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries
    Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang, X. Gong, X. Sui, A. Yu, L. Zhao, …
    Year: 2020 | Citations: 218

  • Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium–sulfur batteries
    D. Luo, G. Li, Y.P. Deng, Z. Zhang, J. Li, R. Liang, M. Li, Y. Jiang, W. Zhang, …
    Year: 2019 | Citations: 216

  • Rational design of tailored porous carbon-based materials for CO₂ capture
    Z. Zhang, Z.P. Cano, D. Luo, H. Dou, A. Yu, Z. Chen
    Year: 2019 | Citations: 213

  • Regulation of outer solvation shell toward superior low‐temperature aqueous zinc‐ion batteries
    Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng, T. Or, L. Yang, Q. Li, Q. Cu, R. Feng, …
    Year: 2022 | Citations: 212

  • “Two Ships in a Bottle” Design for Zn–Ag–O Catalyst Enabling Selective and Long-Lasting CO₂ Electroreduction
    Z. Zhang, G. Wen, D. Luo, B. Ren, Y. Zhu, R. Gao, H. Dou, G. Sun, M. Feng, …
    Year: 2021 | Citations: 200

  • Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO₂ electroreduction
    B. Ren, G. Wen, R. Gao, D. Luo, Z. Zhang, W. Qiu, Q. Ma, X. Wang, Y. Cui, …
    Year: 2022 | Citations: 191

✅ Conclusion

🌟 Prof. Zhen Zhang is a visionary in the field of energy electrocatalysis, combining scientific innovation with a strong record of international collaboration. His pioneering work on confined electrocatalytic materials addresses critical challenges in catalyst performance, contributing to cleaner and more efficient energy systems. With a strong academic foundation, over 5,500 citations, prestigious awards, and leadership in over 16 major projects, Prof. Zhang exemplifies excellence and innovation, making him a compelling candidate for the Best Researcher Award 🏅.

Neetu Yadav | Materials Science | Best Researcher Award

Ms. Neetu Yadav | Materials Science | Best Researcher Award

Department of Physics, University of Lucknow | India

Neetu Yadav is a passionate and dedicated researcher specializing in Material Science, with a keen interest in humidity and gas sensors. Born on April 18, 1996, in India, she currently resides in Pantnagar, Uttarakhand. Her academic journey, combined with a growing list of publications, reflects her commitment to advancing sensor technology through nanomaterials and transition metal oxides. With excellent research, communication, and analytical skills, Neetu brings a multidisciplinary approach to scientific inquiry, bridging physics, chemistry, and materials engineering.

Professional profile👤

Scopus

Google Scholar

ORCID

Strengths for the Awards✨

Ms. Neetu Yadav exemplifies the profile of an emerging researcher in the domain of material science and sensor technology. Her ongoing Ph.D. research at the University of Lucknow focuses on transition metal oxides for gas and humidity sensing applications, a field of significant relevance to environmental monitoring and industrial safety. Despite being at an early stage of her career, she has already co-authored 10+ peer-reviewed publications in reputable journals such as Applied Surface Science, International Journal of Hydrogen Energy, and Physica E, with multiple articles indexed in Scopus and cited internationally.

Her collaborative projects and contributions to interdisciplinary studies involving nanostructures, thin films, irradiation effects, and sensor fabrication underscore her technical competence. She has also co-authored book chapters published by Springer and other academic platforms, indicating her global academic reach. Moreover, her participation in national and international conferences, workshops, and symposiums, as well as involvement in outreach activities like essay competitions and inter-university sports, highlights her holistic development.

🎓 Education

Neetu Yadav is presently pursuing her Ph.D. in Material Science from the Department of Physics, University of Lucknow, focusing on the synthesis and characterization of transition metal oxides for sensor applications. She completed her Master’s in Physics (2019) from the same university with a second division. Prior to that, she earned her B.Sc. in Physics, Chemistry, and Mathematics (2017) from Kumaun University, securing a first division. She also completed her Intermediate and High School from Rajeev Gandhi Navodaya Vidhyalaya, both with top ranks.

🧪 Experience

Neetu has developed hands-on experience through intensive lab work, workshops, and conferences. Her current research explores optical and structural properties of advanced materials, focusing on their applications in gas and humidity sensing. She has actively participated in experimental setups involving thin-film deposition, surface modification via ion irradiation, and nanomaterial synthesis — enriching her technical proficiency and collaborative skills.

🔍 Research Interests On Materials Science

Her research interests center around the synthesis and structural characterization of transition metal oxides, sensor device fabrication, thin films, and ion beam irradiation effects. She aims to enhance sensor performance for environmental monitoring by manipulating nano-scale properties of oxides like MoO₃, WO₃, SnO₂, and CuO. Her interdisciplinary curiosity also extends into nanotechnology’s societal and ethical dimensions. 📊

🏆 Awards & Recognition

Neetu received an Honorable Mention in the All India Essay Writing Event (2016), organized by Shri Ram Chandra Mission & the UN Information Centre. She has also earned accolades in district-level and inter-parliamentary volleyball tournaments. Her involvement in academic events and diverse interests from chess to painting reflect a well-rounded personality.

📚 Publications

Below are selected publications showcasing Neetu Yadav’s contributions to materials science and sensor technology:

  1. Gamma irradiation induced surface modification of V₂O₅ thin films, Applied Surface Science, 2025 — cited by researchers for its relevance to sensor enhancement mechanisms.

  2. Analysis of nanostructured Bi₂O₃-doped MoO₃, Materials Today: Proceedings, 2024 — contributed to optical and humidity sensor evaluation.

  3. Room temperature LPG sensing of Ag-doped CuO:SnO₂, Physica E, 2024 — investigated gas sensing efficiency.

  4. Effects of 100 MeV Ni⁷⁺ ion irradiation on MoO₃ thin films, Nuclear Instruments and Methods B, Oct 2024.

  5. Enhanced hydrogen gas sensing with Ag-doped WO₃, International Journal of Hydrogen Energy, 2023.

  6. SnO₂@ZnO based chemiresistor for Ammonia sensing, Materials Chemistry and Physics, Dec 2023.

  7. Yttrium-Cerium oxide sensor for H₂ detection, Engineering Proceedings, 2023.

  8. NiO and SnO₂ nanoparticles for humidity sensing, Interactions, 2022.

  9. XRD studies of sol-gel derived SnO₂, Int. Conf. on Materials Processing & Applications, 2023.

  10. 120MeV Ni⁷⁺ irradiation effects on WO₃, Journal of Alloys and Compounds, 2025.

📘 Book Chapters:

  • Influence of Temperature on Humidity Sensor (2023), in IIP Series Vol. 3.

  • Nanotechnology: Social Acceptance & Privacy (2024), Springer.

  • Role of Nanotechnology in Sensor Fabrication (2023), IIP Series Vol. 3.

🧠 Conclusion

Neetu Yadav stands out as a promising researcher whose work embodies academic rigor, technical innovation, and societal relevance. Her deep focus on material-based sensors and her contributions through high-impact publications and active participation in global scientific discussions make her an outstanding candidate for the “Best Researcher Award” in Forensic Scientist Awards. 🌟 Her fusion of scientific creativity, hands-on experimentation, and cross-disciplinary collaboration demonstrates not only academic excellence but a steadfast commitment to real-world impact.