Volodymyr Hovorukha | Engineering | Best Researcher Award

Mr. Volodymyr Hovorukha | Engineering | Best Researcher Award

M.S. Poliakov Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine | Ukraine

Mr. Volodymyr Hovorukha is a prominent Ukrainian scientist whose pioneering contributions have shaped the fields of railway engineering, transport mechanics, and structural dynamics. As a Senior Researcher at the M.S. Poliakov Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine, he has made outstanding advancements in understanding the interaction between rail tracks and moving transport systems, the mechanics of deformation, and the reliability of rail infrastructure. His scientific achievements encompass the development of over ten mathematical models addressing dynamic rail–vehicle interaction, wear processes, and derailment safety, particularly under the influence of friction modifiers. He has authored more than 240 scientific papers, including publications indexed in international databases such as Scopus, and four monographs registered with ISBN. Mr. Volodymyr Hovorukha holds 32 patents, three of which have been officially recognized as international discoveries in railway transport. His innovative research has led to the creation of modernized track structures, high-speed rail fastening systems, and reinforced concrete components for both surface and underground transport systems. Under his scientific leadership, over 200 projects have been successfully developed and implemented, significantly contributing to the modernization of Ukraine’s rail infrastructure. His findings on the deformation mechanics of track elements and materials have become the foundation for optimizing the durability and safety of rail systems. An active member of ASME International and the International Academy of Scientific Discoveries and Inventions, Mr. Volodymyr Hovorukha’s research continues to influence railway engineering innovation and infrastructure development globally.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

  1. Hovorukha, V., Hovorukha, A., Sobko, T., & Semyditna, L. (2025). Reliability improvement of track infrastructure in open-pit rail transport. Geo-Technical Mechanics, (173), 38–48. https://doi.org/10.15407/geotm2025.173.038

  2. Hovorukha, V. V., & Hovorukha, A. V. (2023). Improvement of the service life of mining and industrial equipment by using friction modifiers. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 74–82. https://doi.org/10.33271/nvngu/2023-4/074

  3. Hovorukha, V., Hovorukha, A., & Makarov, Y. (2022). Research on the dynamic processes of vehicles and an arbitrary configuration rail track, influencing the side wear of the rail head and wheel flange contact surfaces at different values of friction coefficient between them. IOP Conference Series: Earth and Environmental Science, 970(1), 012029. https://doi.org/10.1088/1755-1315/970/1/012029

  4. Hovorukha, V., Hovorukha, A., Sobko, T., & Semyditna, L. (2022). Method for studying spatial vibrations of a vehicle during its movement along the rail track on separate supports with elastic-dissipative and inertial properties. Geo-Technical Mechanics, (167), 52–60.

  5. Hovorukha, V., Hovorukha, A., Makarov, Y., Sobko, T., & Semyditna, L. (2023, November 14–16). Investigation of residual deformations in joint zones of track sections under curved track operation conditions. In Proceedings of the XXI International Conference of Young Scientists: Geotechnical Problems of Mineral Deposit Development (pp. 145–150). Dnipro, Ukraine.

Guruswamy K. P | Engineering | Best Researcher Award

Dr. Guruswamy K. P | Engineering | Best Researcher Award

University of Visvesvaraya College of Engineering | India

Dr. Guruswamy K. P. is an Associate Professor in the Department of Electrical Engineering at the University of Visvesvaraya College of Engineering (UVCE), Bengaluru. He is widely recognized for his expertise in power electronics, particularly in the modeling and control of advanced power converter systems. His professional journey reflects a blend of academic teaching and innovative research, enabling him to contribute to both the classroom and the wider engineering community. Through his dedicated work, he has advanced the design of compact, efficient, and reliable power converters, making a significant impact on electric vehicle charging systems, renewable energy integration, and smart power management technologies.

Professional Profile

Google Scholar

Education

Dr. Guruswamy K. P began his academic journey at the University of Visvesvaraya College of Engineering, where he earned both his Bachelor’s and Master’s degrees in Electrical Engineering. His early academic training laid a strong foundation in fundamental engineering principles while also sparking his interest in power conversion systems. He further strengthened his expertise by pursuing doctoral research at the Indian Institute of Technology Roorkee, where he specialized in advanced control and modeling of DC–DC converters and resonant converters. This educational progression provided him with a comprehensive balance of theory, practical knowledge, and research skills that continue to influence his work today.

Experience

Over the course of his professional career, Dr. Guruswamy K. P has accumulated extensive teaching and research experience. He began with faculty positions in engineering institutions before advancing to his current role as Associate Professor at UVCE. In this position, he has not only taught core electrical engineering courses but has also supervised research projects and guided students in innovative converter design. He has contributed to the development of laboratory infrastructure, collaborative research initiatives, and academic curricula that integrate emerging topics such as digital control, interleaved converter systems, and sustainable energy applications. His leadership extends beyond teaching, as he regularly collaborates with researchers from leading institutions on interdisciplinary projects.

Research Interest

Dr. Guruswamy K. P research interests lie in the broad area of power electronics, with a specific focus on resonant converters, interleaved DC–DC converters, bidirectional converters, PWM rectifiers, and digital control strategies. He is particularly interested in applying analytical methods and computational modeling to improve the efficiency, reliability, and adaptability of converter technologies. His research often bridges theoretical modeling with practical implementation, which is especially evident in applications such as electric vehicle charging systems, auxiliary power units, and renewable energy integration. By combining modern control approaches with traditional converter design, he continues to drive advancements in sustainable energy systems and high-performance power management solutions.

Awards

Dr. Guruswamy K. P has been consistently recognized for his academic excellence, research contributions, and professional commitment. His innovative work in the field of power converters has earned him appreciation within the engineering community, and his nomination for the Best Researcher Award reflects his sustained achievements in both research and teaching. His professional memberships with ISTE and IEEE further highlight his active involvement in knowledge dissemination and collaboration, underscoring his contributions to advancing power electronics at both national and international levels.

Publications

Dr. Guruswamy K. P has authored and co-authored multiple publications in reputed international journals and conferences. His research spans topics such as digital control methods, resonant LLC converters, bidirectional DC–DC converters, and PWM rectifier applications. Selected works include:

1. Title: Modelling of flyback converter using state space averaging technique
Journal: 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (ICECCT)
Published on: 2015
Citation: 34

2. Title: Design, modeling and analysis of two level interleaved boost converter
Journal: 2013 International Conference on Machine Intelligence and Research Advancement (ICMIRA)
Published on: 2013
Citation: 31

3. Title: Design, Modelling, Analysis and Implementation of Two Phase Interleaved Buck DC-DC Converter
Journal: International Journal of Innovative Science and Research Technology
Published on: 2018
Citation: 8

4. Title: FPGA based 2-stage power conditioning system for PV power generation
Journal: 2013 International Conference on Power, Energy and Control (ICPEC)
Published on: 2013
Citation: 8

5. Title: Design and implementation of two phase interleaved DC-DC boost converter with digital PID controller
Journal: International Journal of Electrical and Electronics Engineering (IJEEE)
Published on: 2013
Citation: 8

6. Title: Performance Analysis for LLC Resonant Converter in Electric Vehicle Applications
Journal: 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC)
Published on: 2023
Citation: 4

7. Title: Performance Analysis of Half-Bridge LC Resonant Converter for UPS Battery Charging Application
Journal: 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC)
Published on: 2023
Citation: 3

Conclusion

Dr. Guruswamy K. P. stands out as a dedicated academic and researcher in the field of power electronics. His educational background, teaching experience, and innovative research collectively illustrate his strong commitment to advancing the field of converter technology. Through his publications, collaborations, and professional memberships, he has consistently contributed to both theoretical and applied aspects of electrical engineering. His nomination for the Best Researcher Award acknowledges not only his scholarly achievements but also his role in shaping the next generation of engineers and promoting sustainable energy solutions through advanced power electronics.

Xinxin Wang | Engineering | Best Researcher Award

Mr. Xinxin Wang | Engineering | Best Researcher Award

North China Electric Power University | China

Xinxin Wang is a driven and innovative PhD candidate at North China Electric Power University, whose work bridges advanced theoretical research with practical engineering solutions. With a strong foundation in machinery and power engineering, he has developed expertise in the design, analysis, and optimization of underground tunneling equipment, particularly Tunnel Boring Machines (TBMs). His career reflects a deep commitment to solving complex challenges in rock mechanics and engineering, supported by collaborative efforts with leading experts in China and abroad. His predictive models and design methods have significantly advanced tunneling efficiency, making him a promising leader in his field.

Professional Profile

Scopus

ORCID

Education

Xinxin Wang earned a Master’s degree in Machinery and Engineering from Inner Mongolia University of Science and Technology, followed by doctoral studies in Power Machinery and Engineering at North China Electric Power University. Selected for the prestigious National “Excellent Engineer Program,” he broadened his academic exposure through a joint doctoral program as a visiting scholar at the University of Pisa, Italy. This international engagement allowed him to integrate advanced European engineering practices with domestic innovation, enriching his academic and professional capabilities in tunneling technology and rock-breaking mechanics.

Experience

Xinxin Wang has actively participated in multiple national-level research projects, including those funded by the National Natural Science Foundation of China and the National High Technology Research and Development Program. His contributions extend to the development of proprietary software for calculating rock-breaking forces in TBM disc cutters and the creation of new cutterhead designs capable of handling varied geological conditions. He works closely with industry and academic partners to ensure his research outcomes are implemented in real-world projects, thus enhancing the efficiency, reliability, and cost-effectiveness of large-scale underground excavation.

Research Interest

His research focuses on intelligent control systems and energy efficiency analysis for advanced underground construction equipment, particularly TBMs. He is deeply engaged in studying the collaborative rock-breaking mechanism of disc cutters, developing predictive models for cutter forces and cutterhead torque, and designing innovative solutions to optimize performance in diverse geological settings. Additionally, his expertise spans rock mechanics, structural analysis, and the integration of advanced computational modeling techniques into engineering practice.

Awards

Xinxin Wang has received recognition for his scholarly achievements through competitive doctoral scholarships and honors for academic excellence. His innovative contributions to TBM rock-breaking mechanics, cutterhead design, and excavation efficiency have been widely acknowledged in professional circles. These recognitions underscore his potential to make sustained and transformative contributions to the tunneling and underground engineering sector, making him a strong candidate for the Best Researcher Award.

Publications

Title: Investigation into the Rock-Breaking Forces of TBM Disc Cutters with Diverse Edge Shapes
Journal: Rock Mechanics and Rock Engineering
Published on: 2025

Title: Study on the Rock-Breaking Forces of TBM Disc Cutters with Uneven Wear
Journal: Chinese Journal of Theoretical and Applied Mechanics
Published on: 2025

Title: Study on Fatigue Characteristics of High-Pressure Vessel with Multiple Cracks in Stages
Journal: Mechanical Design and Manufacturing
Published on: 2024

Title: Allowable Limit of Crack Defect Zone Evaluation under Expected Life of Ultra-high Pressure Vessel Head
Journal: Thermal Processing Technology
Published on: 2024

Conclusion

By combining theoretical innovation with real-world engineering solutions, Xinxin Wang has made impactful contributions to the science and technology of tunnel boring and underground excavation. His research has not only improved operational efficiency but has also reduced construction costs and enhanced safety in challenging environments. With proven academic excellence, international collaboration experience, and a strong record of published work, he exemplifies the qualities of a dedicated and forward-thinking researcher worthy of the Best Researcher Award.

Dehua Wu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Dehua Wu | Engineering | Best Researcher Award

Fuzhou University | China

Dr. Dehua Wu is a highly respected Associate Professor in the Department of Transportation Engineering at the College of Civil Engineering, Fuzhou University. Known for his leadership in intelligent transportation systems research, he has made significant advancements in autonomous driving integration, connected vehicle applications, and traffic safety improvement. His career reflects a dedication to bridging advanced transportation technologies with practical engineering solutions that address real-world challenges. With a strong reputation in both academia and industry, he is frequently invited to contribute his expertise to research collaborations, governmental advisory boards, and infrastructure development projects.

Professional Profile

Scopus

Education

Dr. Wu’s academic achievements form a solid foundation for his expertise in transportation systems. He earned his Ph.D. in Transportation Planning & Management from Tongji University, where he developed analytical frameworks for improving traffic efficiency and safety. He also holds a master’s degree in Road & Railway Engineering and a bachelor’s degree in Highway & Urban Road Engineering from Chang’an University, where he built a deep understanding of road design principles, traffic modeling, and urban mobility planning. His educational background has equipped him with the skills to integrate engineering theory with cutting-edge technology in transportation innovation.

Experience

In his role as Associate Professor at Fuzhou University, Dr. Wu leads research teams, mentors postgraduate students, and designs advanced courses in transportation engineering. His international experience as a Visiting Scholar at the University of Alberta broadened his research scope, allowing him to incorporate global perspectives into local infrastructure solutions. Before entering academia, he served as a Senior Engineer at the Fujian Transport Planning Bureau, where he played a key role in formulating strategies for road safety auditing, transportation policy, and network optimization. His professional portfolio includes consulting work on large-scale safety risk assessments, expressway development, and urban traffic impact studies, demonstrating his ability to apply research to practical, high-stakes projects.

Research Interest

Dr. Wu’s research spans Intelligent Transportation Systems, autonomous and connected vehicle integration, and advanced traffic safety evaluation. His work addresses congestion management, accident black spot analysis, and the development of data-driven traffic control models. He has conducted in-depth studies on traffic flow dynamics in tunnel and expressway systems under intelligent connected conditions, offering innovative solutions for speed limit control, hazard detection, and infrastructure resilience. Additionally, his research extends to transportation planning and facility design, with a focus on creating adaptable, future-ready systems that enhance mobility, safety, and sustainability.

Awards

Dr. Wu’s research leadership and his ability to translate complex engineering concepts into actionable transportation solutions have earned him professional recognition and respect. His projects, funded by prestigious scientific foundations and transportation technology programs, have directly influenced transportation safety protocols, traffic management systems, and smart vehicle integration strategies. His sustained record of impactful research positions him as an exemplary candidate for the Best Researcher Award, reflecting a career defined by innovation, practical relevance, and societal benefit.

Publications

Title: Hybrid Characteristics of Heterogeneous Traffic Flow in Intelligent Network
Journal: Journal of Southwest Jiaotong University
Published on: 2022

Title: Hybrid Characteristics of Heterogeneous Traffic Flow Under Different Aggregating Lane-Change Strategies in Intelligent Network
Journal: Journal of Southwest Jiaotong University
Published on: 2023

Title: Adaptive Variable Speed Limit Optimization Control Model for Highways
Journal: Journal of Fuzhou University (Natural Science Edition)
Published on: 2017

Title: Evolution Patterns of Heterogeneous Traffic Flow at Ramp Bottlenecks on Expressways
Journal: Journal of Guizhou University (Natural Science Edition)
Published on: 2020

Title: Fuzzy Control and Simulation of Congested Traffic Flow in Merge Bottleneck Areas Based on Chaos Theory
Journal: Journal of Guizhou University (Natural Science Edition)
Published on: 2017

Title: Quantitative Algorithm for Traffic Sign Information Based on Information Transfer Principle
Journal: Journal of Guizhou University (Natural Science Edition)
Published on: 2017

Conclusion

Dr. Dehua Wu’s career exemplifies the integration of research excellence, engineering innovation, and applied problem-solving. His contributions to intelligent transportation systems, safety management, and infrastructure optimization have influenced policy, shaped industry practices, and advanced the scientific understanding of traffic behavior. With a proven ability to deliver high-impact research and practical solutions, he stands as a leading figure in his field and an outstanding nominee for the Best Researcher Award.

Karim Heydari | Engineering | Best Researcher Award

Dr. Karim Heydari | Engineering | Best Researcher Award

Isfahan University of Technology | Iran

Dr. Karim Heydari is a distinguished scientist and academic in the field of textile engineering and polymer science, renowned for his expertise in developing sustainable and high-performance polymer composites. His research has been instrumental in transforming recycled polyethylene terephthalate (PET) into advanced textile fibers with improved mechanical integrity, flame resistance, and processability. Through innovative use of nanotechnology, eco-friendly flame-retardant systems, and molecular chain extenders, Dr. Heydari has contributed significantly to bridging environmental sustainability with industrial-scale manufacturing. His dedication to advancing polymer recycling technologies positions him as a leading figure in sustainable materials research.

Professional Profile

ORCID

Education

Dr. Heydari holds a strong academic background in textile engineering, polymer processing, and materials science, with specialized training in fiber manufacturing technologies, rheological property analysis, and nanocomposite engineering. His educational journey has provided him with a unique interdisciplinary skill set, enabling him to address challenges in polymer degradation, fiber spinning, and additive compatibility with scientifically sound and technologically viable solutions.

Experience

Throughout his career, Dr. Heydari has led and collaborated on multiple high-impact research projects focused on the optimization of recycled polymers for advanced textile applications. His work encompasses the full material development chain from feedstock selection and additive formulation to reactive extrusion, melt spinning, and product testing. He has applied advanced analytical techniques such as scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and rheological characterization to evaluate and enhance composite performance. In addition to academic publications, Dr. Heydari has actively collaborated with industrial partners to translate laboratory innovations into production-ready materials, particularly for applications demanding both performance and environmental compliance.

Research Interest

Dr. Heydari’s research interests cover a broad range of topics in sustainable material science, including polymer recycling and upcycling, flame-retardant fiber composites, nano clay dispersion technologies, rheology-driven process optimization, and environmentally friendly additive systems. He is particularly passionate about valorizing multiple-recycled PET often considered unsuitable for high-quality applications  by restoring its molecular architecture and enhancing its functional properties. His research is driven by the goal of creating textile fibers that meet rigorous mechanical, thermal, and safety standards without compromising ecological responsibility.

Awards

Dr. Heydari has gained recognition for his pioneering contributions to sustainable polymer technology and textile engineering. His innovative approach to combining zinc phosphinate flame retardants, Cloisite 30B nanoclay, and multifunctional epoxy-based chain extenders has resulted in composites with exceptional flame resistance, thermal stability, and spinnability. These advancements not only contribute to safer and more durable textile products but also support global sustainability initiatives. His ability to merge scientific innovation with industrial applicability makes him a highly deserving candidate for the Best Researcher Award.

Publications

Dr. Karim Heydari has contributed impactful research on the rheological, thermal, and mechanical enhancement of recycled polyethylene terephthalate (PET) composites, with a focus on flame retardancy and spinnability.

Title: Enhanced Spinning Properties of Chain‐Extended Flame‐Retarded Multiple‐Recycled PET/Cloisite 30B Nanocomposite
Journal: Journal of Applied Polymer Science
Published on: August 2025

Title: Rheological Probing Molecular Weight Increase in Flame Retarded Doubly Recycled PET in the Presence of Nanoclay and Investigating its Spinnability
Journal: Preprint
Published on: January 2025

Conclusion

Dr. Karim Heydari’s contributions to polymer recycling and textile engineering represent a significant step forward in the creation of sustainable, high-performance materials. His work addresses urgent environmental challenges associated with polymer waste while providing viable solutions for industrial fiber production. By integrating advanced material science with practical manufacturing processes, he continues to influence the fields of textile engineering, polymer technology, and sustainable manufacturing. His research not only pushes the boundaries of scientific understanding but also demonstrates a commitment to creating eco-conscious innovations that can be adopted across global industries.

Jinguo Han | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jinguo Han | Engineering | Best Researcher Award

Shandong University of Technology | China

Dr. Jinguo Han is a distinguished Associate Professor at the School of Mechanical Engineering, Shandong University of Technology. He has built a prolific career in mechanical and mechatronic engineering, with extensive contributions to advanced materials processing, surface modification, and high-precision manufacturing. His innovative research bridges academia and industry, providing impactful solutions in aerospace, automotive, and biomedical fields.

Professional profile👤

Scopus

ORCID

Strengths for the Awards✨

Dr. Jinguo Han stands out as a pioneering researcher in the field of advanced materials processing and ultra-precision manufacturing. With a Ph.D. in Mechanical Engineering and a rapid academic progression to Associate Professor at Shandong University of Technology, his career demonstrates an impressive blend of theoretical rigor and technological innovation. His interdisciplinary research—ranging from ultrasonic rolling, laser-assisted machining, to multi-dimensional vibration-assisted processing—has direct applications in aerospace, biomedical, and automotive industries, reflecting real-world impact.

Dr. Han has authored more than 10 high-impact publications in leading journals like IEEE Transactions on Industrial Electronics, Materials & Design, and Micromachines. Notably, several of these are first-author or corresponding-author papers, reflecting his independent leadership in research. His work is not only academically relevant but also highly applied, evidenced by eight national patents and consistent grant acquisition, including funding from NSFC and provincial bodies.

🎓 Education

Dr. Han earned his Ph.D. in Mechanical Engineering from Changchun University of Technology (2015–2018), preceded by a Master’s in Mechatronic Engineering from the same institution (2012–2015). His academic journey began with a Bachelor’s in Mechatronic Engineering at Heze University (2008–2012). His education laid a solid foundation for multidisciplinary research across engineering and material sciences. 🎓

💼 Experience

Since July 2023, Dr. Han serves as an Associate Professor at Shandong University of Technology. Prior to this, he was a Lecturer at the same institution (2018–2023). His academic leadership is evident through successful mentorships, extensive project coordination, and laboratory development in manufacturing processes and simulation.

🔬 Research Interests On Engineering

Dr. Han’s research revolves around ultra-precision machining, nanomachining, laser-assisted processes, and microstructure formation. He explores cutting of hard and brittle materials, vibration-assisted technologies, surface integrity, materials characterization, and innovative tool design. His work consistently pushes the boundaries of micro-manufacturing, benefiting cutting-edge industrial applications. 🛠️

🏆 Awards and Grants

Dr. Han has secured prestigious national and provincial-level research grants, including from the National Natural Science Foundation of China, Shandong Provincial Department of Education, and the China Postdoctoral Science Foundation. These honors underscore his leadership in low-damage machining, vibration modulation, and laser-elliptical cutting.

📚 Publications

Dr. Han has published numerous impactful articles in peer-reviewed journals. Here are selected works:

  1. Finite element investigation on shear deformation and cutting force for elliptical vibration cutting Ti6Al4V alloyThe International Journal of Advanced Manufacturing Technology, 2025 (Cited by 10+)

  2. Molecular dynamics simulation of material removal in monocrystalline siliconJournal of Mechanical Science and Technology, 2025 (Cited by 5+)

  3. Multi-objective design of a tri-axial servo cutting systemJournal of Manufacturing Processes, 2022, 84:1133–1149 (Cited by 22)

  4. Hierarchical micro/nano structures via piezoelectric systemMaterials & Design, 2022, 224 (Cited by 35)

  5. Investigation of cutting force in 3D elliptical vibrationMicromachines, 2022, 13(8) (Cited by 18)

  6. Development of grinding tool with flexible compositeMaterials and Manufacturing Processes, 2020, 36(4): 479–487 (Cited by 16)

  7. Optimization of elliptical vibration-assisted cutting systemIEEE Transactions on Industrial Electronics, 2019, 66(2): 1151–1161 (Cited by 41)

  8. Piezoelectric tool actuator for vibration cuttingPiezoelectric Actuators, IntechOpen, 2022 (Cited by 9)

  9. Three-dimensional vibration turning deviceMicromachines, 2017, 8(10) (Cited by 13)

  10. Piezoelectric actuator for elliptical vibration turningSmart Materials and Structures, 2017, 26(8) (Cited by 19)

  11. Predictive model of cutting force in vibration cuttingInternational Journal of Mechanical Sciences, 2016, 117: 43–52 (Cited by 27)
    📖

📄 Conclusion

Dr. Jinguo Han is a visionary in mechanical and precision engineering. Through groundbreaking research, 11+ peer-reviewed articles, multiple patents, and successful projects, he exemplifies excellence in high-impact academic innovation. His work continues to shape future technologies in precision manufacturing, and his nomination for a prestigious research award is highly merited.