Tengfei Cheng | Materials | Best Researcher Award

Mr. Tengfei Cheng | Materials | Best Researcher Award

Hefei General Machinery Research Institute Co., Ltd | China

Tengfei Cheng is a dedicated engineer and researcher specializing in materials science and engineering. With a strong academic background and extensive experience in research and development, he has contributed significantly to the fields of hydrogen storage materials, electrochemical energy storage, and corrosion-resistant alloys. Currently, he is serving as an engineer at the Hefei General Machinery Research Institute, focusing on pressure vessel and pipeline technology.

Professional profile👤

ORCID

Scopus

Strengths for the Awards✨

  1. Extensive Research Contributions: Tengfei Cheng has published numerous high-impact journal articles across various reputable journals, including Angewandte Chemie International Edition, ACS Applied Materials & Interfaces, and Industrial & Engineering Chemistry Research.
  2. Diverse Research Areas: His work spans multiple crucial areas, including lithium-ion and lithium-sulfur batteries, hydrogen storage materials, and aluminum alloys, showcasing his versatility and expertise in materials science and engineering.
  3. Notable Research Funding: He has secured multiple research grants, including projects on hydrogen storage systems and high-entropy alloys, indicating recognition of his work by funding agencies.
  4. Strong Academic Background: With both a Bachelor’s and Master’s degree in Materials Science and Engineering from Shanghai University, he has a solid educational foundation that supports his research excellence.
  5. Industry and Academic Experience: His employment at Hefei General Machinery Research Institute and Yunnan Innovation Institute of Beijing University of Aeronautics and Astronautics reflects his contributions to both industrial applications and academic research.

Education 🎓

Tengfei Cheng holds both a Master’s and a Bachelor’s degree in Materials Science and Engineering from Shanghai University. His academic journey began in 2014 with undergraduate studies, followed by a master’s degree completed in 2021. His research during this period laid the foundation for his expertise in advanced materials and their applications in energy storage and structural integrity.

Professional Experience 💼

Cheng has accumulated valuable experience in engineering and research. He started as an assistant engineer at the New Materials Research Center of Yunnan Innovation Institute, Beijing University of Aeronautics and Astronautics, before moving to his current role at Hefei General Machinery Research Institute. His work primarily revolves around the development of high-performance materials for industrial applications, with a focus on safety assessments and material durability.

Research Interests On Materials 🔬

Cheng’s research interests span several cutting-edge areas in materials science, including:

  • Hydrogen storage materials and high-entropy alloys
  • Electrochemical energy storage, including lithium-sulfur and sodium-ion batteries
  • Corrosion-resistant alloys and mechanical properties of aluminum-based materials
  • Advanced material processing techniques, such as high-pressure torsion and molecular dynamics simulations

Awards & Funding 🏆

Tengfei Cheng has been recognized for his contributions through various research grants and funding programs:

  • China National Machinery Industry Corporation Grant (2024-2027): Design and Safety Assessment Technology of High-Density Adaptive Solid-State Hydrogen Storage System.
  • Hefei General Machinery Research Institute Grant (2023-2025): Research on Uniformization Preparation and Hydrogen Storage Properties of Titanium-Based High-Entropy Alloys.

Publications 📚

Cheng has authored numerous research papers in prestigious journals. Some of his key publications include:

  • “Enhanced Lithium Polysulfide Conversion via the Second Current Collector Based on Multitransition-Metal-Phosphides for Li–S Batteries”

    • Authors: Liqing He, Kaiquan He, Tengfei Cheng, Wanggang Fang, Chaoqun Shang

    • Publication Year: 2025

  • “Thiol-assisted regulated electronic structure of ultrafine Pd-based catalyst for superior formic acid electrooxidation performances”

    • Authors: Yanling Hu, Jianding Li, Qianqian Wang, Xueqing Yu, Yao Kang, Tengfei Cheng, Liqing He, Linfeng Zhang

    • Publication Year: 2025

  • “Topological Insulator Heterojunction with Electric Dipole Domain to Boost Polysulfide Conversion in Lithium‐Sulfur Batteries”

    • Authors: Hedong Chen, Yecheng Qiu, Zhiyuan Cai, Wenhao Liang, Lin Liu, Manman Li, Xianhua Hou, Fuming Chen, Xunzhu Zhou, Tengfei Cheng, et al.

    • Publication Year: 2025

  • “Functionalized Polyethylene Separators with Efficient Li-Ion Transport Rate for Fast-Charging Li-Ion Batteries”

    • Authors: Ning Dang, Jiarong Mao, Yuqiong Mao, Wenjun Yi, Dan Li, Tengfei Cheng, Liqing He, Jinni Deng, Zhengping Zhao, Tianbao Zhao, et al.

    • Publication Year: 2025

  • “Study on the Microstructure and Mechanical Properties of Al–Cu–Mg Aluminum Alloy Based on Molecular Dynamics Simulation”

    • Authors: Jing Huang, Tengfei Cheng, Wanggang Fang, Xinghai Ren, Xiangqun Duan, Zhigong Xu, Shulin Xiang

    • Publication Year: 2024

  • “Effects of the corrosion mechanism evolution of low silicon-cast aluminium alloys in service”

    • Authors: Tengfei Cheng, Guoqing Zou, Xiaoyan Mao, Yuxiang Yang

    • Publication Year: 2023

  • “Electrolyte precursor–free approach to prepare composite electrolyte for all-solid-state Na-ion battery”

    • Authors: Liqing He, Zhen Wang, Yuxiang Li, Heng Lin, Jianjun Li, Tengfei Cheng, Qiang Zhu, Chaoqun Shang, Zonghai Lu, Ricardo Floriano, et al.

    • Publication Year: 2023

  • “Severe Plastic Deformation through High-Pressure Torsion for Preparation of Hydrogen Storage Materials – A Review”

    • Authors: Liqing He, Xiaowei Shi, Xiaoyan Li, Jing Huang, Tengfei Cheng, Xianfeng Wang, Yuxiang Li, Heng Lin, Kazuyuki Edalati, Hiroyuki W. Li

    • Publication Year: 2023

  • “Analysis of the Fluidity and Hot Tearing Susceptibility of AlSi3.5Mg0.5Cu0.4 and A356 Aluminum Alloys”

    • Authors: Guoqing Zou, Yujie Chai, Qiang Shen, Tengfei Cheng, Hong Zhang

    • Publication Year: 2022

  • “The Improvement in Mechanical Properties and Strengthening Mechanism of The New Type of Cast Aluminum Alloy with Low Silicon Content for Automotive Purposes”

    • Authors: Tengfei Cheng, Peng Li, Fucheng Lu, Chao Wang, Hong Zhang, Yuxiang Yang

    • Publication Year: 2022

Conclusion 📈

Tengfei Cheng is a highly accomplished researcher whose work has made significant contributions to the fields of materials science, hydrogen storage, and electrochemical energy storage. His continued research and expertise in developing innovative materials promise to shape the future of sustainable energy solutions and advanced engineering materials.

Jihye Kim | Materials | Best Researcher Award

Dr. Jihye Kim | Materials | Best Researcher Award

Assistant Professor | Colorado School of Mines | United States

Dr. Jihye Kim is an accomplished Assistant Professor at the George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines. With a strong background in extractive metallurgy, resource recovery, and critical materials extraction, Dr. Kim has made significant contributions to sustainable materials processing. Her research focuses on innovative hydrometallurgical techniques, mineral carbonation for carbon sequestration, and chemical modeling of electrolyte systems. Dr. Kim is dedicated to fostering a stimulating learning environment that encourages students to explore, discover, and think critically beyond the classroom.

Professional profile👤

ORCID

Google Scholar

Scopus

Strengths for the Awards✨

  • Outstanding Research Contributions

    • Dr. Jihye Kim has an extensive publication record, including high-impact journal articles, conference papers, and book chapters.
    • Her research focuses on critical topics such as extractive metallurgy, mineral processing, carbon capture, and rare earth element recovery, all of which have significant industrial and environmental implications.
  • Strong Funding and Grant Success

    • She has successfully secured multiple high-value research grants, including funding from the National Science Foundation (NSF), Department of Energy (DOE), NASA, and the Alfred P. Sloan Foundation.
    • Active involvement as a Principal Investigator (PI) and Co-PI in multimillion-dollar research projects.
  • Awards and Recognitions

    • Recipient of the Ontario Trillium Scholarship ($160,000) and multiple academic scholarships and fellowships, demonstrating academic excellence and research impact.
    • Earned the Students Discovery Award (2021) at the University of Toronto, recognizing her research achievements.
  • Industrial and International Research Experience

    • Hands-on experience through engineering internships with Barrick Gold Corporation and National Metallurgical Laboratory, India.
    • Strong international collaborations with institutions in South Korea, Canada, and the USA.
  • Educational and Mentorship Contributions

    • Engaged in teaching undergraduate and graduate courses at the Colorado School of Mines.
    • Experience as a teaching assistant at University of Toronto and Seoul National University, shaping the next generation of metallurgical engineers.

Education 🎓

Dr. Kim earned her Doctor of Philosophy in Chemical Engineering from the University of Toronto (2017-2021), where she worked on sustainable valorization of steelmaking slag under the guidance of Professor Gisele Azimi. Prior to her Ph.D., she obtained a Master of Applied Science in Energy Systems Engineering (2014-2016) and a Bachelor of Applied Science in Energy Resources Engineering (2011-2014) from Seoul National University.

Experience 🌟

Dr. Kim’s academic and professional journey reflects her expertise in metallurgical and materials engineering. She is currently an Assistant Professor at Colorado School of Mines, where she leads cutting-edge research projects and teaches courses on chemical processing, transport phenomena, and hydrometallurgical processing. Previously, she was a Postdoctoral Fellow at the University of Toronto, focusing on resource-efficient hydrometallurgical recovery of platinum group metals and rare earth elements. Her teaching experience includes serving as a Teaching Assistant at the University of Toronto and Seoul National University. She also gained industry experience as an Engineering Intern at Barrick Gold Corporation (Canada) and the National Metallurgical Laboratory (India).

Research Interests On Materials 🔬

Dr. Kim’s research centers on sustainable resource recovery, extractive metallurgy, and carbon capture technologies. She specializes in hydrometallurgical processing, mineral carbonation for CO2 sequestration, critical materials extraction from secondary resources, and electrolyte system modeling. Her work aims to develop environmentally friendly and economically viable methods for metal recovery and waste valorization.

Awards & Honors 🏆

Dr. Kim has received numerous prestigious awards, including the Ontario Trillium Scholarship (2017-2021), the Students Discovery Award (2021), and multiple fellowships from the University of Toronto. She was also awarded the Brain Korea 21 Plus Scholarship, Academic-Industrial Scholarship from Hyundai Resources Development, and several merit-based scholarships from Seoul National University. Her outstanding academic achievements were recognized with Graduation with Honors (Cum Laude) from Seoul National University in 2014.

Publications 📚

Dr. Kim has published extensively in top-tier journals, contributing valuable insights into metallurgical and materials engineering. Some of her notable publications include:

  • The CO2 sequestration by supercritical carbonation of electric arc furnace slag

    • Authors: J Kim, G Azimi
    • Year: 2021
    • Citations: 42
  • An innovative process for extracting scandium from nickeliferous laterite ore: Carbothermic reduction followed by NaOH cracking

    • Authors: J Kim, G Azimi
    • Year: 2020
    • Citations: 22
  • Recovery of scandium and neodymium from blast furnace slag using acid baking–water leaching

    • Authors: J Kim, G Azimi
    • Year: 2020
    • Citations: 20
  • Valorization of electric arc furnace slag via carbothermic reduction followed by acid baking–water leaching

    • Authors: J Kim, G Azimi
    • Year: 2021
    • Citations: 19
  • Technospheric mining of niobium and titanium from electric arc furnace slag

    • Authors: J Kim, G Azimi
    • Year: 2020
    • Citations: 16
  • Matrix complexity effect on platinum group metals analysis using inductively coupled plasma optical emission spectrometry

    • Authors: J Kim, J Anawati, G Azimi
    • Year: 2018
    • Citations: 16
  • Effect of sulfuric acid baking and caustic digestion on enhancing the recovery of rare earth elements from a refractory ore

    • Authors: R Kim, H Cho, J Jeong, J Kim, S Lee, KW Chung, HS Yoon, CJ Kim
    • Year: 2020
    • Citations: 15
  • Selective precipitation of titanium, magnesium, and aluminum from the steelmaking slag leach liquor

    • Authors: J Kim, G Azimi
    • Year: 2022
    • Citations: 13
  • Mineral carbonation of iron and steel by-products: State-of-the-art techniques and economic, environmental, and health implications

    • Authors: S Wang, J Kim, T Qin
    • Year: 2024
    • Citations: 12
  • Recent advancements in hydrometallurgy: solubility and separation

    • Authors: KN Han, R Kim, J Kim
    • Year: 2024
    • Citations: 10

Conclusion 🎯

Dr. Jihye Kim is a dedicated researcher and educator committed to advancing metallurgical and materials engineering. Her work in extractive metallurgy, critical materials recovery, and sustainable processing methods contributes to the global effort toward environmentally responsible resource management. Through her innovative research, teaching, and mentorship, Dr. Kim continues to inspire the next generation of engineers and scientists in the field of materials engineering.

Guangming Tian | Materials | Best Researcher Award

Mr. Guangming Tian | Materials | Best Researcher Award

Processor | Xi’an Polytechnic University | China

Guangming Tian is an Associate Professor at Xi’an Polytechnic University, specializing in polymer materials and engineering. He obtained his Ph.D. in Polymer Chemistry and Physics from Northwestern Polytechnical University in 2020. His expertise lies in the structural regulation of shape memory polymer networks, intelligent polymer materials, and fibric actuators. Throughout his academic career, he has published extensively in high-impact journals, contributing significantly to the field of smart polymeric materials.

Professional profile👤

Scopus

Strengths for the Awards✨

Extensive Research Background: Guangming Tian has been actively engaged in polymer chemistry and physics, particularly focusing on shape memory polymers and dynamic covalent bonds, for over 20 years.

Published Research: With 12 SCI-indexed publications in reputable journals such as Small, Sensors and Actuators B: Chemical, and International Journal of Biological Macromolecules, his research demonstrates significant contributions to the field.

Funded Research Projects: He has led five funded projects, including the General Project of Shaanxi Basic Research Program and multiple regional science and technology bureau projects, showcasing his ability to attract funding for impactful research.

Patents & Books: Holding two patents and having published two books with ISBNs, he has made contributions beyond journal publications, expanding his influence in academia and industry.

Industry Collaborations: His involvement in three consultancy/industry projects indicates real-world applications of his research.

🎓 Education

  • Ph.D. in Polymer Chemistry and Physics – Northwestern Polytechnical University (2020)
  • B.Sc. and M.Sc. in Chemistry and Chemical Engineering – Northwestern Polytechnical University

💼 Experience

  • Associate Professor – Xi’an Polytechnic University, Department of Polymer Materials and Engineering
  • Researcher – School of Materials Engineering, focusing on polymer intelligent materials and dynamic covalent bond-based applications
  • Collaborator – Research projects with Guangming Zhu at Northwestern Polytechnical University

🔬 Research Interests On Materials

  • Shape Memory Polymers (SMPs)
  • Dynamic Covalent Bond-Based Intelligent Materials
  • Crystallization Mechanisms in Polymer Networks
  • Fibric Actuators and Their Applications

🏆 Awards & Recognitions

  • Nominee for Best Researcher Award
  • Recognition for contributions to polymer research and shape memory polymer advancements

📚 Publications

  • “Wet-spinning fabrication of stretchable multicolor fluorescent fibers augmented with dual-state emissive dyes”

    • Authors: Shuanglong Li, Guangming Tian, Xinhai He, Jianhua Ma, Dong Yang
    • Publication Year: 2024
  • “Advancements in component separation through chemical methods for recycled polyester/cotton blended textiles”

    • Authors: Jianhua Ma, Kaili Yang, Mengxin Wang, Jinyu Shan, Dong Yang, Guangming Tian
    • Publication Year: 2024
  • “Biomimetic shape-morphing actuators with controlled bending deformation and photo-mediated 3D shape programming for flexible smart devices”

    • Authors: Guangming Tian, Rui Wen, Jianhua Ma, Chong Fu
    • Publication Year: 2024
  • “Polyester/Cotton-Blended Textile Waste Fiber Separation and Regeneration via a Green Chemistry Approach”

    • Authors: Kaili Yang, Mengxin Wang, Xinru Wang, Jinyu Shan, Jie Zhang, Guangming Tian, Dong Yang, Jianhua Ma
    • Publication Year: 2024
  • “Biodegradable photo-crosslinked polycaprolactone/polydopamine elastomers with excellent light-driven programmable shape memory and chemical degradation properties”

    • Authors: Guangming Tian, Jingxia Wang
    • Publication Year: 2024
  • “Bacterial cellulose/silver composite film in-situ coated copper alginate for thermally responsive antimicrobial dressing”

    • Authors: Baiqing Song, Tianyi Zhang, Xinfeng Li, Kaili Yang, Guangming Tian, Yunzhi Dang, Jianhua Ma
    • Publication Year: 2023
  • “Photo-activated shape memory polymer with chiral twisting based on anisotropic bilayer thin sheets”

    • Authors: Guangming Tian, Jie Zhang, Mingcai Li, Xin Zhang, Dong Yang, Shuguang Zheng
    • Publication Year: 2023
  • “On-demand bidirectional shape transformations and novel chiral actuators of photomediated shape memory polymer film based on photothermal OEGy-W18O49 nanowires”

    • Authors: GuangMing Tian, Bo Wang, XinHai He, Chen Wang, Dong Yang, JianHua Ma
    • Publication Year: 2023
  • “Triphenylamine-Based N,O-Bidentate BF2-Enolimine Initiator for Three-arm Star Polymethacrylates with Dual-State Fluorescent Emission”

    • Authors: Dong Yang, Guangming Tian, Jianhua Ma
    • Publication Year: 2023
  • “Synthesis and characterization of shape memory poly (ε-caprolactone) networks with programmable and reconfigurable shape-morphing behaviors”

    • Authors: Guangming Tian, Shuo Zhao, Longkai Pan, Dong Yang, Jianhua Ma
    • Publication Year: 2023

📑 Research Contributions

Guangming Tian has been dedicated to shape memory polymer research for over 20 years. As the first author of 12 SCI papers with 65 citations, he has contributed to the development of intelligent polymer networks and their practical applications. His work has influenced both academic and industrial advancements in material science.

🔚 Conclusion

Guangming Tian continues to push the boundaries of polymer science through his research on shape memory materials and dynamic covalent networks. His extensive contributions to the field underscore his expertise and commitment to innovation, making him a prominent figure in polymer research and material engineering.

Dhiraj Kumar Rana | Materials | Best Researcher Award

Dr. Dhiraj Kumar Rana | Materials | Best Researcher Award

Postdoctoral Fellow | Indian Institute of Technology Delhi | India

Dr. Dhiraj Kumar Rana is a distinguished researcher in Materials Science and Polymer Engineering, currently serving as a National Post-Doctoral Fellow at the Department of Materials Science and Engineering, Indian Institute of Technology Delhi. His research primarily focuses on multiphase polymeric and elastomeric materials, functional smart materials, and their applications in energy storage, wearable electronics, and soft robotics. With a strong academic foundation and extensive research contributions, Dr. Rana has made significant advancements in flexible charge storage materials and elastomeric nanocomposites.

Profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  • Extensive Research Experience – With a career spanning over two decades in physical chemistry and photochemistry, Professor Yang has made significant contributions to the field.
  • Innovative Research in Phototherapy – His work on photochemical probes, nanotechnology for drug-controlled release, and phototherapy (both photodynamic and photothermal therapy) is impactful in medical and pharmaceutical sciences.
  • High Research Output – He has published 46 SCI-indexed research articles, with recent publications in top-tier journals like Biomaterials and Analytical Chemistry.
  • Funded Research Projects – Successfully secured grants, including the National Natural Science Foundation (21473101).
  • Intellectual Property Contributions – Holds four patents, demonstrating his focus on innovation and real-world applications.

Education 🎓

Dr. Rana obtained his B.Sc. in Physics (Honours) from North Orissa University, Baripada, in 2008, followed by an M.Sc. in Physics from NIT Rourkela in 2010. He further specialized in Advanced Materials Science and Technology with an M.Tech. from NIT Durgapur in 2013. His Ph.D., awarded by NIT Durgapur in 2019, focused on Experimental Condensed Matter Physics, emphasizing electrical and magnetic properties of polymer multiferroic nanocomposites.

Experience 🌍

Dr. Rana has held several research positions, including Junior Research Fellow at BIT Patna, Research Associate at NIT Durgapur, and Institute Post-Doctoral Fellow at IISER Mohali. Since 2022, he has been a National Post-Doctoral Fellow at IIT Delhi, contributing significantly to the development of novel polymeric materials for flexible electronics. His teaching experience includes courses in Engineering Physics and Advanced Physics at NIT Durgapur and Jharkhand Raksha Shakti University, Ranchi.

Research Interests On Materials🔬

Dr. Rana’s research encompasses a broad range of topics within Materials Science and Polymer Engineering. His expertise includes multiphase polymeric and elastomeric materials, dielectric and magnetic elastomers, flexible charge storage, nanomaterial synthesis (barium titanate, ferrite nanoparticles, graphene oxide, etc.), and applications in soft robotics and wearable electronics. He is proficient in advanced characterization techniques such as XRD, SEM, TEM, AFM, and various electrical, dielectric, and thermal analysis methods.

Awards 🏆

Dr. Rana has been recognized for his contributions to materials science through prestigious fellowships, including the SERB-National Post-Doctoral Fellowship. His research achievements have also earned him accolades in the field of advanced functional materials.

Publications 📚

  • Title: Electrical and room temperature multiferroic properties of polyvinylidene fluoride nanocomposites doped with nickel ferrite nanoparticles
    Authors: DK Rana, SK Singh, SK Kundu, S Roy, S Angappane, S Basu
    Publication Year: 2019
    Citations: 67

  • Title: Electrical and magnetic properties of polyvinyl alcohol–cobalt ferrite nanocomposite films
    Authors: DK Rana, SK Singh, SK Kundu, RJ Choudhary, S Basu
    Publication Year: 2018
    Citations: 34

  • Title: Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials
    Authors: PS Banerjee, DK Rana, SS Banerjee
    Publication Year: 2022
    Citations: 26

  • Title: Relaxor ferroelectric behavior of “A” site deficient Bismuth doped Barium Titanate ceramic
    Authors: T Badapanda, V Senthil, DK Rana, S Panigrahi, S Anwar
    Publication Year: 2012
    Citations: 25

  • Title: An easy synthesis of carbon-supported silver–cobalt bimetallic nanoparticles to study the electrocatalytic performance in alkaline borohydride fuel cell
    Authors: S Dey, S Pramanik, P Chakraborty, DK Rana, S Basu
    Publication Year: 2022
    Citations: 18

  • Title: Development of organic-inorganic flexible PVDF-LaFeO3 nanocomposites for the enhancement of electrical, ferroelectric and magnetic properties
    Authors: DK Rana, V Mehta, SK Kundu, S Basu
    Publication Year: 2020
    Citations: 18

  • Title: Enhanced multiferroic, magnetodielectric and electrical properties of Sm doped Lanthanum ferrite nanoparticles
    Authors: SK Kundu, DK Rana, L Karmakar, D Das, S Basu
    Publication Year: 2019
    Citations: 15

  • Title: Enhancement of electrical and magnetodielectric properties of BiFeO3 incorporated PVDF flexible nanocomposite films
    Authors: DK Rana, SK Kundu, RJ Choudhary, S Basu
    Publication Year: 2019
    Citations: 14

  • Title: Surfactant-free synthesis of carbon-supported silver (Ag/C) nanobars as an efficient electrocatalyst for alcohol tolerance and oxidation of sodium borohydride in alkaline medium
    Authors: S Dey, P Chakraborty, DK Rana, S Pramanik, S Basu
    Publication Year: 2021
    Citations: 13

  • Title: Influence of manganese on multiferroic and electrical properties of lanthanum ferrite nanoparticles
    Authors: SK Kundu, DK Rana, A Banerjee, D Das, S Basu
    Publication Year: 2019
    Citations: 7

Conclusion 📊

Dr. Dhiraj Kumar Rana is an accomplished scientist whose research has significantly contributed to the advancement of functional and smart materials. His expertise in polymeric nanocomposites and energy storage applications continues to drive innovation in flexible electronics and soft robotics. With an impressive publication record and ongoing research at IIT Delhi, Dr. Rana remains at the forefront of cutting-edge materials science research.