Lei Tao | Chemistry | Best Researcher Award

Dr. Lei Tao | Chemistry | Best Researcher Award

Associate professor | Tsinghua University | China

Lei Tao, is an accomplished chemist specializing in polymer science and engineering. Currently an Associate Professor at the Department of Chemistry, Tsinghua University, his research focuses on multicomponent reactions and self-healing hydrogels. With over 200 publications and more than 16,000 citations, his work has gained international recognition.

Professional profile👤

ORCID

Scopus

Strengths for the Awards✨

  • Pioneering Research: Lei Tao has made remarkable contributions to polymer chemistry, focusing on multicomponent reactions, self-healing hydrogels, and bio-applications.
  • Publication Excellence: With over 200 SCI papers and more than 16,000 citations, his H-index of 68 highlights the substantial impact of his research.
  • Recognitions and Awards: Notable accolades include being a Clarivate Highly Cited Researcher in 2018 and 2019, and receiving the Outstanding Reviewer award for Polymer Chemistry in 2021.
  • Leadership Roles: Editorial roles at Molecules and Polymer Chemistry reflect his influence in the academic community.
  • Interdisciplinary Impact: His work bridges chemistry, biology, and materials science, with innovative applications in UV protection, heavy metal damage prevention, and bacterial resistance.

🎓 Education

Lei Tao earned his BS (1994-1999) and MS (1999-2002) degrees from the University of Science and Technology of China in Polymer Science and Engineering, under the supervision of Prof. Caiyuan Pan. He completed his PhD in Chemistry at the University of Warwick (2003-2006), mentored by Prof. David Haddleton.

💼 Experience

Following his doctoral studies, Dr. Tao undertook postdoctoral research at the University of California, Los Angeles (2006-2008) with Prof. Heather Maynard and at the University of New South Wales, Australia (2008-2010) with Prof. Thomas Davis. Since 2010, he has been an Associate Professor at Tsinghua University.

🔬 Research Interests On Chemistry

Dr. Tao’s research focuses on:

  • Multicomponent reactions for new functional polymers.
  • Self-healing hydrogels for bio-applications.

📝 Awards

  • 2021: Outstanding Reviewer of Polymer Chemistry (Journal).
  • 2019: Outstanding Employee of Tsinghua University.
  • 2019: Clarivate Highly Cited Researcher (Cross-field); Top Peer Reviewer.
  • 2018: Clarivate Highly Cited Researcher (Cross-field).
  • 2018: First Prize, 8th Young Teachers Teaching Competition, Tsinghua University.

📖 Publications

  1. Synthesis and Performance of Epoxy-Terminated Hyperbranched Polymers Based on Epoxidized Soybean Oil

    • Year: 2025
    • Authors: Guang-Zhao Li, Qiuhong Wang, Chongyu Zhu, Shuai Zhang, Fumei Wang, Lei Tao, Youqi Jiang, Qiang Zhang, Wenyan Wang, Rui Han
    • DOI: 10.3390/molecules30030583
  2. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports

    • Year: 2024
    • Authors: Tongda Lei, Jiajun Pan, Ning Wang, Zhaopeng Xia, Qingsong Zhang, Jie Fan, Lei Tao, Wan Shou, Yu Gao
    • DOI: 10.1039/D3MH02013D
  3. Hydrogels constructed by multicomponent reactions

  4. Highly transparent UV-shielding film via Hantzsch’s reaction to prevent artwork from UV bleaching

    • Year: 2024
    • Authors: Siyu Pan, Xianzhe He, Chongyu Zhu, Zeyu Ma, Yingkai Liu, Yen Wei, Rui Yuan, Lei Tao
    • DOI: 10.1016/j.xcrp.2024.102257
  5. Ferrocene-Based Antioxidant Self-Healing Hydrogel via the Biginelli Reaction for Wound Healing

    • Year: 2024
    • Authors: Rui Yuan, Zhao Fang, Fang Liu, Xianzhe He, Sa Du, Nan Zhang, Qiang Zeng, Yen Wei, Yuwei Wu, Lei Tao
    • DOI: 10.1021/acsmacrolett.4c00063
  6. Recent Developments in Functional Polymers via the Kabachnik–Fields Reaction: The State of the Art

  7. Polymeric Copper Chelator for Long-term Inhibition of Breast Cancer Proliferation and Lung Metastasis

  8. Superhydrophobic Coatings Composed of Multifunctional Polymers Synthesized Using Successive Modification of Dihydropyrimidin-2(1H)-thione

  9. Poly(vinyl alcohol) Modified via the Hantzsch Reaction for Biosafe Antioxidant Self-Healing Hydrogel

  10. Coral-friendly and non-transdermal polymeric UV filter via the Biginelli reaction for in vivo UV protection

🌍 Conclusion:

Dr. Lei Tao is a leading figure in polymer chemistry, pioneering multicomponent reactions and self-healing hydrogels. His influential work continues to inspire advancements in materials science and bio-applications.

Ping Chen | Chemistry | Best Researcher Award

Dr. Ping Chen | Chemistry | Best Researcher Award

China Institute of Atomic Energy | China

Dr. Ping Chen is an accomplished assistant researcher at the China Institute of Atomic Energy, specializing in nuclear chemistry and geochemistry. Her work focuses on the synthesis and analysis of high-purity uranium oxides, redox behavior of uranium on Beishan granite, and the migration and diffusion of technetium-99 in clay. With extensive experience in handling unsealed radioactive sources and advanced analytical techniques, she has contributed significantly to understanding radionuclide behavior in geological environments.

Professional profile👤

ORCID

Strengths for the Awards✨

  • Outstanding Academic Background: Ping Chen’s education spans top institutions, from East China University of Technology to the University of Bern, covering radiation protection, nuclear chemistry, and earth chemistry.
  • Diverse Research Experience: Extensive research in nuclear chemistry and geochemistry, with a focus on uranium oxides, redox behavior, adsorption processes, and radionuclide migration, demonstrates a deep understanding of critical topics in environmental safety and nuclear waste management.
  • Impressive Publication Record: With six publications in high-impact journals such as Applied Geochemistry and Journal of Radioanalytical and Nuclear Chemistry, Ping Chen has made significant contributions to understanding nuclear material behavior.
  • International Collaboration: Research conducted with global institutions, including collaborations with PSI (Paul Scherrer Institute), shows the ability to work across borders, enriching scientific perspectives.
  • Technical Proficiency: Mastery of techniques like SEM, XPS, XAS, ICP-OES, and PHREEQC modeling reflects a robust skillset for cutting-edge research.
  • Recognized Excellence: Multiple scholarships, including from the Chinese Scholarship Council, highlight consistent academic excellence.
  • Practical Experience: Hands-on experience with unsealed radioactive sources and work in controlled environments ensures practical expertise in handling sensitive materials.

🎓 Education

  • Bachelor’s Degree in Radiation Protection and Environmental Engineering, East China University of Technology (2010.09-2014.06)
  • Master’s Degree in Nuclear Science and Technology/Nuclear Chemistry, Sun-Yat University (2014.09-2017.06)
  • PhD in Earth Chemistry, University of Bern (2018.08-Present)

💼 Experience

  • Internship: Institute of Radiation Protection, China (2013.05-2013.06)
  • Lecturer: East China University of Technology (2023.12-2024.04)
  • Assistant Researcher: China Institute of Atomic Energy (2024.05-Present)

🔬 Research Interests On Chemistry

  • Synthesis and analysis of high-purity uranium oxides
  • Redox behavior of uranium on Beishan granite
  • Adsorption of divalent iron on illite
  • Migration and diffusion of technetium-99 in clay

🏆 Awards

  • Scholarship awarded by the Chinese Scholarship Council (2018-2021)
  • First Prize Scholarship (2015, 2016, 2017)
  • National Encouragement Scholarship (2011)

🔖 Publications

  • Chen, P., Van Loon, L.R., Koch, S., Alt-Epping, P., Reich, T., & Churakov, S.V. (2024). “Reactive transport modeling of diffusive mobility and retention of TcO₄⁻ in Opalinus clay.” Applied Clay Science, 251, 107327.

    • Authors: Ping Chen, Luc R. Van Loon, Steffen Koch, Peter Alt-Epping, Tobias Reich, Sergey V. Churakov.
    • Publication Year: 2024
  • Shengchao Li, Duo Zhou, Mingfang Zhou, Hongyun Liu, & Ping Chen. (2025). “Research on electromigration of Sr²⁺ in mudstone: diffusion and modelling.” Journal of Radioanalytical and Nuclear Chemistry.

    • Authors: Shengchao Li, Duo Zhou, Mingfang Zhou, Hongyun Liu, Ping Chen.
    • Publication Year: 2025
  • Chen, P., Churakov, S.V., Glaus, M., & Van Loon, L.R. (2023). “Impact of Fe(II) on ⁹⁹Tc diffusion behavior in illite.” Applied Geochemistry, 56, 105759.

    • Authors: Ping Chen, Sergey V. Churakov, Martin Glaus, Luc R. Van Loon.
    • Publication Year: 2023
  • Chen, P., Van Loon, L.R., Marques Fernandes, M., & Churakov, S.V. (2022). “Sorption mechanism of Fe(II) on illite: Sorption and modelling.” Applied Geochemistry, 143, 105389.

    • Authors: Ping Chen, Luc R. Van Loon, Maria Marques Fernandes, Sergey V. Churakov.
    • Publication Year: 2022
  • Chen, P., Ma, Y., Kang, M., Shang, C., Song, Y., Xu, F., Wang, J., Song, G., & Yang, Y. (2020). “The redox behavior of uranium on Beishan granite: Effect of Fe²⁺ and Fe³⁺ content.” Journal of Environmental Radioactivity, 217, 106208.

    • Authors: Ping Chen, Yue Ma, Mingliang Kang, Chengming Shang, Yang Song, Fengqi Xu, Ju Wang, Gang Song, Yongqiang Yang.
    • Publication Year: 2020
  • Chen, P., Huang, D., Chen, C., Suzuki-Muresan, T., Kang, M., Wang, J., Song, G., & Wang, B. (2017). “Investigation of reaction conditions on synthesis of UO₂.₃₄ and UO₂ via hydrothermal route.” Journal of Radioanalytical and Nuclear Chemistry, 313(1), 229-237.

    • Authors: Ping Chen, Dongyu Huang, Chenchen Chen, Tomo Suzuki-Muresan, Mingliang Kang, Jin Wang, Gang Song, Biao Wang.
    • Publication Year: 2017

Conclusion

Ping Chen’s dedication to nuclear chemistry and geochemistry has led to remarkable insights into radionuclide behavior in geological environments. Her research has contributed significantly to the understanding of uranium oxidation states, iron adsorption, and technetium-99 diffusion, paving the way for advancements in radioactive waste management and environmental safety.

Xinhua Ouyang | Chemistry | Best Researcher Award

Prof. Dr. Xinhua Ouyang | Chemistry | Best Researcher Award

Professor | Fujian Agriculture & Forestry University | China

Dr. Xinhua Ouyang is a distinguished professor at the College of Material Engineering, Fujian Agriculture & Forestry University, China. With extensive expertise in organic and perovskite solar cells, organic light-emitting devices, and nonlinear optical materials, he has significantly contributed to the advancement of photoelectronic materials. His research focuses on the synthesis, fabrication, and theoretical understanding of novel materials for energy applications. Dr. Ouyang has published numerous high-impact papers and has been recognized for his contributions to the field.

Profile👤

ORCID

Strengths for the Awards✨

Outstanding Research Contributions: Xinhua Ouyang has made significant contributions in the fields of organic and perovskite solar cells, organic light-emitting devices, and nonlinear optics. His research has direct implications for renewable energy and advanced materials, aligning well with cutting-edge scientific advancements.

High-Impact Publications: Published in prestigious journals such as Nature Photonics, Advanced Energy Materials, Angewandte Chemie International Edition, and Advanced Functional Materials, which indicates high recognition in the scientific community. These journals have high impact factors, demonstrating the broad influence of his work.

Interdisciplinary Research Approach: His expertise spans materials science, chemistry, and applied physics, demonstrating a well-rounded and innovative research profile.

International Research Exposure: His academic and research experiences include collaborations with institutions like National University of Singapore, showcasing global research collaboration and expertise.

Innovation in Solar Cell Technology: His contributions to defect passivation in perovskite solar cells and efficiency enhancements in organic solar cells suggest significant advancements in renewable energy technologies, making his research valuable for practical applications.

Education 🎓

  • B.S. in Chemistry (1999.9-2003.6) – College of Chemistry and Chemical Engineering, Jishou University, China.
  • M.S. in Organic Chemistry (2003.9-2006.7) – School of Chemistry and Environment, South China Normal University, China (Supervisor: Prof. Heping Zeng).
  • Ph.D. in Applied Chemistry (2006.9-2009.12) – School of Chemistry and Chemical Engineering, South China University of Technology, China (Supervisor: Prof. Heping Zeng).
  • Joint Ph.D. Culture Program in Materials Physics and Chemistry (2008.9-2009.9) – Department of Physics, National University of Singapore, Singapore (Supervisor: Prof. Wei Ji).

Experience 🌿

  • Professor (2016.7-present) – Fujian Agriculture & Forestry University.
  • Associate Professor (2011.3-2016.6) – Ningbo Institute of Materials Technology and Engineering.
  • Research Fellow (2009.10-2011.2) – National University of Singapore.

Research Interests On Chemistry 🔬

  • Solar Cells: Design, synthesis, and properties of organic and perovskite materials; fabrication of high-efficiency solar devices; theoretical investigations.
  • Organic Light-Emitting Devices: Development of novel emitters, carrier transport materials, and interfacial materials; dopant and non-dopant device fabrication; theoretical analysis using Gaussian software.
  • Nonlinear Optical Materials: Synthesis and property evaluation; transient optical property analysis using advanced laser path design.
  • Photoelectronic Materials: Understanding novel mechanisms and structure-property relationships for cutting-edge applications.

Awards & Honors 🏆

Dr. Ouyang has received numerous awards recognizing his pioneering research in photoelectronic materials, including national and international honors for his contributions to organic and perovskite solar cells.

Publications 📚

Dr. Ouyang has authored many influential papers in top-tier journals. Below are some of his representative works:

  1. Dimethylacridine Based Emitters for Non‐Doped Organic Light‐Emitting Diodes with Improved Efficiency

    • Authors: Min Zhang, Xingye Zhang, Ning Yang, Yibing Wu, Xinhua Ouyang
    • Year: 2025
  2. Efficient perovskite solar cells based on polyoxyethylene bis(amine) and NaPF6 modified SnO2 layer with high open-circuit voltage

    • Authors: Xiangning Xu, Zhichao Lin, Qili Song, Hairui Duan, Hongye Dong, Xiaowen Gao, Osamah Alsalman, Cheng Mu, Xinhua Ouyang
    • Year: 2024
  3. In Situ Photogenerated Radicals of Hydroxyl Substituted Pyrene‐Based Triphenylamines with Enhanced Transport and Free Doping/Post‐Oxidation for Efficient Perovskite Solar Cells

    • Authors: Xiaohui Wang, Zhixin Xie, Rongxin Wang, Ye Xiao, Kai Yan, Yu Zhao, Rui Lin, Carl Redshaw, Yonggang Min, Xinhua Ouyang et al.
    • Year: 2024
  4. Simultaneous dual-interface modification based on mixed cations for efficient inverted perovskite solar cells with excellent stability

    • Authors: Chunjian Wu, Rongxin Wang, Zhichao Lin, Ning Yang, Yibing Wu, Xinhua Ouyang
    • Year: 2024
  5. Tailoring the permittivity of passivated dyes to achieve stable and efficient perovskite solar cells with modulated defects

    • Authors: Rongxin Wang, Zhichao Lin, Xinhua Ouyang
    • Year: 2024
  6. Improved charge transport based on donor-acceptor type solid additive with large dipole moment for efficient organic solar cells

    • Authors: Rui Lin, Hui Zhou, Xuee Xu, Xinhua Ouyang
    • Year: 2024
  7. Boosting the efficiency of organic solar cells based on a highly planar π-conjugated solid additive working as the sensitizer

    • Authors: Rui Lin, Hui Zhou, Xuee Xu, Xinhua Ouyang
    • Year: 2024
  8. Highly Stable Perovskite Solar Cells Based on the Efficient Interaction between Pb2+ and Cyano Groups of 4‐Aminophthalonitrile

    • Authors: Hairui Duan, Zhichao Lin, Xiangning Xu, Qili Song, Hongye Dong, Xiaowen Gao, Cheng Mu, Xinhua Ouyang
    • Year: 2023
  9. Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable MAPbI3‐Based Inverted Perovskite Solar Cells

    • Authors: Xuefeng Zhu, Rui Lin, Hao Gu, Huichao Hu, Zheng Liu, Guichuan Xing, Yibing Wu, Xinhua Ouyang
    • Year: 2023
  10. Excited-state intramolecular proton transfer emitter for efficient violet-blue organic light-emitting diodes with hybridized local/charge transfer channel

  • Authors: Yibing Wu, Rongxin Wang, Rui Lin, Xuee Xu, Xingye Zhang, Osamah Alsalman, Yu Qiu, Ashraf Uddin, Xinhua Ouyang
  • Year: 2023

Conclusion 🌟

Dr. Xinhua Ouyang is a leading researcher in photoelectronic materials, with a strong background in organic and perovskite solar cells, organic light-emitting devices, and nonlinear optics. His extensive research contributions and innovative approaches continue to shape the future of sustainable energy materials. With a dedication to advancing science and technology, Dr. Ouyang remains at the forefront of material engineering, driving the development of next-generation photoelectronic applications.