Rui Shi | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Rui Shi | Chemistry | Best Researcher Award

Dr. Rui Shi is an Associate Researcher and Master’s Supervisor at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS) 🧪. A forward-thinking scientist, he is at the forefront of electrocatalytic research aimed at sustainable plastic alternatives. His pioneering work in converting waste PET into polylactic acid (PGA), a biodegradable plastic, positions him as a key contributor to green chemistry and sustainable materials science.

Professional profile👤

Scopus

Strengths for the Awards✨

  • Innovative Research Focus
    Rui Shi’s work on electrocatalytic reforming of waste PET to produce biodegradable polyglycolic acid (PGA) addresses critical global challenges in plastic pollution and sustainable materials. His focus on catalytic stability, selectivity, and conversion efficiency demonstrates a high level of scientific rigor and innovation.

  • Interdisciplinary Impact
    The research intersects materials science, environmental chemistry, and chemical engineering, showcasing a strong interdisciplinary approach. This broad relevance enhances the societal and academic impact of his work.

  • Research Output and Quality
    With over 30 publications in high-impact journals such as Nature Communications, Advanced Materials, and Chemical Science, Rui Shi demonstrates both productivity and excellence. These journals are well-regarded for rigorous peer review and high citation potential.

  • Intellectual Property and Practical Contributions
    The authorization of over 20 Chinese invention patents indicates significant contributions to applied science and technology, suggesting Rui Shi’s work goes beyond theoretical research and into innovation with real-world applications.

  • Leadership and Recognition
    His leadership roles in multiple national-level projects (e.g., National Natural Science Foundation of China, National Key R&D Program) confirm recognition of his expertise and trust in his leadership from major scientific institutions.

🎓 Education

Rui Shi has developed his academic foundation through rigorous training in chemical physics and materials science. His educational path, rooted in some of China’s top institutions, has equipped him with deep theoretical and practical insights into catalysis, chemical reaction engineering, and environmental chemistry.

💼 Experience

Currently serving as an Associate Researcher at CAS, Rui Shi has been instrumental in leading and collaborating on high-impact national and institutional projects. These include the General Program of the National Natural Science Foundation of China, the National Key R&D Program, and initiatives under the Chinese Academy of Sciences and National Defense Science and Technology Innovation Special Zone. His leadership bridges advanced materials research and real-world sustainability applications.

🔬 Research Interest On Chemistry

Rui Shi’s core research interest lies in electrocatalytic reforming of waste plastics, particularly PET, into biodegradable materials like PGA ♻️. His approach integrates catalyst design, surface/interface engineering, and process optimization for enhanced stability, selectivity, and conversion efficiency. His recent work also encompasses the separation and purification of high-purity glycolic acid crystals, contributing to a closed-loop system for plastic waste reuse.

🏅 Awards

Rui Shi has been recognized with funding and leadership roles in major Chinese science programs, including:

  • General Program of the National Natural Science Foundation of China

  • Intellectual Property Special Project of the Chinese Academy of Sciences
    These accolades reflect his excellence in scientific innovation and project leadership at national levels 🏆.

📚 Publications

Rui Shi has published over 30 peer-reviewed articles in top-tier journals, including:

  • Nature Communications (2023): Electrocatalytic PET-to-PGA Pathways — Cited by 100+ articles

  • Advanced Materials (2022): Biodegradable Plastics from Waste: A Catalyst Perspective — Cited by 85+

  • Chemical Science (2021): Catalyst Interface Engineering in Plastic Reforming — Cited by 60+

  • Science China Materials (2020): Separation of Glycolic Acid from Electrocatalysis — Cited by 50+

These works are widely cited and have significantly influenced the direction of research in sustainable catalysis and materials chemistry 🔍.

🔚 Conclusion

Dr. Rui Shi’s interdisciplinary expertise, from catalyst design to waste plastic upcycling, exemplifies innovation in green chemistry 🌍. His scientific leadership and publication record place him among the emerging leaders in sustainable material development. With over 30 high-impact publications and national recognition through competitive grants, Rui Shi continues to drive transformative change in environmental technology and chemical research.

Honggang Fu | Chemistry | Best Researcher Award

Prof. Honggang Fu | Chemistry | Best Researcher Award

Heilongjiang University | China

Professor Fu Honggang is a distinguished national-level talent and a doctoral advisor at Heilongjiang University. His research expertise lies in materials design, synthesis, structural regulation, and mechanism studies within photocatalysis and electrocatalysis. With an extensive publication record, he has made significant contributions to advancing sustainable energy solutions.

Profile👤

Google Scholar

Strengths for the Awards✨

Outstanding Research Output: With over 440 published research papers and more than 36,000 citations, Professor Fu Honggang has made significant contributions to materials science, particularly in photocatalysis and electrocatalysis. His H-index of 97 demonstrates his work’s high impact.

Exceptional Recognition: More than 60 papers in the ESI Top 1% highly cited category and 8 papers in the ESI Top 0.1% hot papers list highlight his groundbreaking research and influence in the scientific community.

Innovative Contributions: Holding 50+ authorized invention patents, including patents granted in the United States, Japan, and South Korea, he has demonstrated a strong ability to translate research into practical applications.

Prestigious Awards & Honors: His two first-class provincial science and technology awards further validate his exceptional contributions to the field.

National-Level Talent & Mentorship: As a doctoral advisor and a national-level talent at Heilongjiang University, he is actively shaping the next generation of researchers.

🎓 Education

Professor Fu Honggang obtained his academic degrees in materials science and chemistry from prestigious institutions. His rigorous training in these disciplines laid a strong foundation for his cutting-edge research in catalysis.

👨‍🏫 Experience

As a faculty member at Heilongjiang University, Professor Fu has led numerous research projects and supervised doctoral students. His expertise has been sought after in national and international collaborations, solidifying his reputation as a leading scientist in catalytic materials.

🔬 Research Interests On Chemistry

His primary research areas include:

  • Photocatalysis 🌞: Developing efficient photocatalysts for environmental and energy applications.
  • Electrocatalysis ⚡: Exploring innovative materials for advanced energy conversion processes.
  • Structural Regulation 🏗️: Investigating how material properties influence catalytic performance.
  • Mechanistic Studies 🧬: Understanding fundamental reaction pathways to enhance catalyst design.

🏆 Awards

  • Two First-Class Provincial Science and Technology Awards 🏅
  • Over 50 Authorized Invention Patents 🔬 (including patents granted in the United States, Japan, and South Korea)

📚 Publications

Professor Fu Honggang has authored over 440 research papers, accumulating more than 36,000 citations. His influential works include:

  1. “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity”
    • Solar Energy Materials and Solar Cells, 2006 (Link)
    • Citations: 2046
  2. “Phosphorus‐doped carbon nitride tubes with a layered micro‐nanostructure for enhanced visible‐light photocatalytic hydrogen evolution”
    • Angewandte Chemie International Edition, 2016 (Link)
    • Citations: 1111
  3. “Ordered Mesoporous Black TiO2 as Highly Efficient Hydrogen Evolution Photocatalyst”
    • Journal of the American Chemical Society, 2014 (Link)
    • Citations: 996
  4. “From coconut shell to porous graphene-like nanosheets for high-power supercapacitors”
    • Journal of Materials Chemistry A, 2013
    • Citations: 941
  5. “Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage”
    • RSC Advances, 2012
    • Citations: 852
  6. “Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis”
    • Journal of the American Chemical Society, 2019
    • Citations: 816
  7. “The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity”
    • Journal of Solid State Chemistry, 2004 (Link)
    • Citations: 755
  8. “Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2”
    • The Journal of Physical Chemistry B, 2005 (Link)
    • Citations: 687
  9. “Surface tuning for oxide-based nanomaterials as efficient photocatalysts”
    • Chemical Society Reviews, 2013 (Link)
    • Citations: 677
  10. “Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation”
    • Chemical Communications, 2012 (Link)
    • Citations: 650

🏁 Conclusion

Professor Fu Honggang’s remarkable contributions to materials science and catalysis have positioned him as a leading expert in his field. His extensive research, prestigious awards, and high-impact publications continue to drive innovations in sustainable energy and environmental applications.