Valery Zakharov | Chemical Engineering | Excellence in Research Award

Dr. Valery Zakharov | Chemical Engineering | Excellence in Research Award

Lomonosov Moscow State University | Russia

Dr. Valeriy Zakharov is a distinguished scientist whose career demonstrates a lifelong commitment to advancing the chemical sciences. His pioneering studies in coordination chemistry, spectroscopy, and photophysical processes have shaped the understanding of molecular structures and photoactive systems. Throughout his career, he has collaborated with leading researchers, delivered influential conference presentations, and authored numerous impactful publications. His research stands at the intersection of fundamental science and applied innovation, making him one of the most respected contributors to the global scientific community.

Professional Profile

Scopus

Google Scholar

ORCID

Education

Dr. Valeriy Zakharov pursued his higher education in chemistry at Lomonosov Moscow State University, where he specialized in physical and inorganic chemistry. His graduate research was devoted to coordination compounds and their photophysical behavior in complex environments. During his doctoral training, he mastered advanced spectroscopic techniques and theoretical approaches, providing him with the expertise to investigate light-sensitive systems and molecular structures. The strong academic foundation he established at the university became the cornerstone of his later achievements in both theoretical and experimental chemistry.

Experience

In his professional career, Dr. Valeriy Zakharov has held teaching and research responsibilities at Lomonosov Moscow State University, where he consistently combined academic rigor with scientific creativity. His early work focused on electron microscopy of silver halide systems, exploring the mechanisms of latent image formation in photographic materials. He later expanded his research into optically detected magnetic resonance and low-temperature phosphorescence of coordination compounds, broadening the scope of spectroscopic studies. He has been actively involved in both national and international collaborations, ensuring that his findings reached a global audience and promoting cross-disciplinary scientific exchange.

Research Interests

Dr. Valeriy Zakharov’s research interests cover a wide spectrum of modern chemistry. He has dedicated much of his work to understanding the structural and photophysical properties of coordination compounds, with special attention to the triplet states of transition metal complexes. His investigations of silver halide systems provided new insights into photographic sensitivity, image formation, and the fundamental processes of photochemistry. He has also made significant contributions to optically detected magnetic resonance spectroscopy and its applications to metal complexes and rare-earth elements. In addition, his studies on surface-enhanced Raman scattering have advanced the understanding of molecular interactions on colloidal silver surfaces, creating new opportunities for nanomaterials research and applied spectroscopy.

Awards

Dr. Valeriy Zakharov has been widely recognized for his exceptional contributions to chemistry and spectroscopy. His innovative approaches to studying photoactive materials and the development of advanced spectroscopic techniques have earned him high regard in both academic and applied sciences. The nomination for the Excellence in Research Award in Scientific Research highlights his lasting influence, his role in advancing scientific knowledge, and his dedication to training and inspiring the next generation of chemists.

Publications

Dr. Valeriy Zakharov has authored numerous scholarly works that have advanced the fields of spectroscopy, coordination chemistry, and photophysics. His publications include influential articles in highly respected journals and collaborative studies with leading scientists. A few notable examples include:

  • Surface-enhanced raman scattering of 2, 2′-bipyridine adsorbed on colloidal silver and stabilized AgBr sols
    Journal of Colloid and Interface Science
    Published on: 1993
    Citation: 42

  • Surface tension of silver in different media
    Journal of Physics and Chemistry of Solids
    Published on: 1993
    Citation: 29

  • Photoluminescent silicon nanocrystals stabilized by ionic liquid
    Journal of Nanoparticle Research
    Published on: 2011
    Citation: 24

  • Low-temperature phosphorescence and ODMR study of 2, 2′-bipyridine and Rh (bpy) 3+ 3
    Chemical Physics Letters
    Published on: 1987
    Citation: 23

  • The crystal and molecular structure of complex Gd (NO3)(phen) 2
    Russian Journal of Coordination Chemistry
    Published on: 1991
    Citation: 22

  • Stabilization of silicon nanoparticles by carbenes
    Russian Journal of Coordination Chemistry
    Published on: 2010
    Citation: 20

  • The isolated flat silicon nanocrystals (2D structures) stabilized with perfluorophenyl ligands
    Journal of Nanoparticle Research
    Published on: 2014
    Citation: 18

Conclusion

Dr. Valeriy Zakharov has dedicated his career to advancing the chemical sciences, producing research that is both pioneering and enduring in its influence. His work has provided clarity to complex spectroscopic phenomena, expanded the knowledge of photoactive coordination compounds, and opened new avenues in photochemistry and nanomaterials. His dedication to scientific excellence, collaborative spirit, and prolific contributions make him a highly deserving candidate for the Excellence in Research Award in Scientific Research at Lomonosov Moscow State University.

 

Xinxin Wang | Engineering | Best Researcher Award

Mr. Xinxin Wang | Engineering | Best Researcher Award

North China Electric Power University | China

Xinxin Wang is a driven and innovative PhD candidate at North China Electric Power University, whose work bridges advanced theoretical research with practical engineering solutions. With a strong foundation in machinery and power engineering, he has developed expertise in the design, analysis, and optimization of underground tunneling equipment, particularly Tunnel Boring Machines (TBMs). His career reflects a deep commitment to solving complex challenges in rock mechanics and engineering, supported by collaborative efforts with leading experts in China and abroad. His predictive models and design methods have significantly advanced tunneling efficiency, making him a promising leader in his field.

Professional Profile

Scopus

ORCID

Education

Xinxin Wang earned a Master’s degree in Machinery and Engineering from Inner Mongolia University of Science and Technology, followed by doctoral studies in Power Machinery and Engineering at North China Electric Power University. Selected for the prestigious National “Excellent Engineer Program,” he broadened his academic exposure through a joint doctoral program as a visiting scholar at the University of Pisa, Italy. This international engagement allowed him to integrate advanced European engineering practices with domestic innovation, enriching his academic and professional capabilities in tunneling technology and rock-breaking mechanics.

Experience

Xinxin Wang has actively participated in multiple national-level research projects, including those funded by the National Natural Science Foundation of China and the National High Technology Research and Development Program. His contributions extend to the development of proprietary software for calculating rock-breaking forces in TBM disc cutters and the creation of new cutterhead designs capable of handling varied geological conditions. He works closely with industry and academic partners to ensure his research outcomes are implemented in real-world projects, thus enhancing the efficiency, reliability, and cost-effectiveness of large-scale underground excavation.

Research Interest

His research focuses on intelligent control systems and energy efficiency analysis for advanced underground construction equipment, particularly TBMs. He is deeply engaged in studying the collaborative rock-breaking mechanism of disc cutters, developing predictive models for cutter forces and cutterhead torque, and designing innovative solutions to optimize performance in diverse geological settings. Additionally, his expertise spans rock mechanics, structural analysis, and the integration of advanced computational modeling techniques into engineering practice.

Awards

Xinxin Wang has received recognition for his scholarly achievements through competitive doctoral scholarships and honors for academic excellence. His innovative contributions to TBM rock-breaking mechanics, cutterhead design, and excavation efficiency have been widely acknowledged in professional circles. These recognitions underscore his potential to make sustained and transformative contributions to the tunneling and underground engineering sector, making him a strong candidate for the Best Researcher Award.

Publications

Title: Investigation into the Rock-Breaking Forces of TBM Disc Cutters with Diverse Edge Shapes
Journal: Rock Mechanics and Rock Engineering
Published on: 2025

Title: Study on the Rock-Breaking Forces of TBM Disc Cutters with Uneven Wear
Journal: Chinese Journal of Theoretical and Applied Mechanics
Published on: 2025

Title: Study on Fatigue Characteristics of High-Pressure Vessel with Multiple Cracks in Stages
Journal: Mechanical Design and Manufacturing
Published on: 2024

Title: Allowable Limit of Crack Defect Zone Evaluation under Expected Life of Ultra-high Pressure Vessel Head
Journal: Thermal Processing Technology
Published on: 2024

Conclusion

By combining theoretical innovation with real-world engineering solutions, Xinxin Wang has made impactful contributions to the science and technology of tunnel boring and underground excavation. His research has not only improved operational efficiency but has also reduced construction costs and enhanced safety in challenging environments. With proven academic excellence, international collaboration experience, and a strong record of published work, he exemplifies the qualities of a dedicated and forward-thinking researcher worthy of the Best Researcher Award.