Elżbieta Radziszewska-Zielina | Engineering | Best Researcher Award

Prof. Dr. Elżbieta Radziszewska-Zielina | Engineering | Best Researcher Award

Cracow University of Technology | Poland

Prof. Dr. Elżbieta Radziszewska-Zielina is a distinguished researcher from Politechnika Krakowska, Krakow, Poland, widely recognized for her pioneering work in civil engineering, sustainable construction management, and intelligent systems for project engineering. Her research bridges technical innovation, computational modeling, and sustainability principles to enhance efficiency, environmental responsibility, and resilience in the built environment. She has published 59 scientific papers indexed in Scopus, which have collectively received 838 citations, yielding a Scopus h-index of 20, reflecting her strong academic influence and international recognition. Her studies focus on modern construction materials, energy-efficient building technologies, blue-green infrastructure, and systemic approaches to reducing greenhouse gas emissions in urban construction. Her innovative use of computational techniques—including type-1 and type-2 fuzzy logic, stochastic networks, multi-criteria decision analysis, and optimization algorithms—has advanced the understanding and practical application of complex construction processes. Prof. Dr. Elżbieta Radziszewska-Zielina’s notable research outputs include the development of decision-support systems for construction planning, models for adaptive reuse of historic buildings, and optimization frameworks for nearly zero-energy buildings. She has contributed to key international research and educational projects funded by the National Science Centre (NCN), National Centre for Research and Development (NCBR), Horizon 2020, and other European programs. Her editorial leadership includes guest editing special issues in Sustainability, Polymers, and Open Engineering, and serving on the boards of Archives of Civil Engineering and Selected Scientific Papers – Journal of Civil Engineering.

Profiles: Scopus | Google Scholar | ORCID | ResearchGate

Featured Publications

  • Kania, E., Radziszewska-Zielina, E., & Śladowski, G. (2020). Communication and information flow in Polish construction projects. Sustainability, 12(21), 9182. https://doi.org/10.3390/su12219182

  • Radziszewska-Zielina, E., & Śladowski, G. (2017). Supporting the selection of a variant of the adaptation of a historical building with the use of fuzzy modelling and structural analysis. Journal of Cultural Heritage, 26, 53–63. https://doi.org/10.1016/j.culher.2017.02.007

  • Radziszewska-Zielina, E., Śladowski, G., & Sibielak, M. (2017). Planning the reconstruction of a historical building by using a fuzzy stochastic network. Automation in Construction, 84, 242–257. https://doi.org/10.1016/j.autcon.2017.09.005

  • Radziszewska‐Zielina, E. (2010). Methods for selecting the best partner construction enterprise in terms of partnering relations. Journal of Civil Engineering and Management, 16(4), 510–520. https://doi.org/10.3846/jcem.2010.57

  • Korytárová, J., Hanák, T., Kozik, R., & Radziszewska–Zielina, E. (2015). Exploring the contractors’ qualification process in public works contracts. Procedia Engineering, 123, 276–283. https://doi.org/10.1016/j.proeng.2015.10.084

Dehua Wu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Dehua Wu | Engineering | Best Researcher Award

Fuzhou University | China

Dr. Dehua Wu is a highly respected Associate Professor in the Department of Transportation Engineering at the College of Civil Engineering, Fuzhou University. Known for his leadership in intelligent transportation systems research, he has made significant advancements in autonomous driving integration, connected vehicle applications, and traffic safety improvement. His career reflects a dedication to bridging advanced transportation technologies with practical engineering solutions that address real-world challenges. With a strong reputation in both academia and industry, he is frequently invited to contribute his expertise to research collaborations, governmental advisory boards, and infrastructure development projects.

Professional Profile

Scopus

Education

Dr. Wu’s academic achievements form a solid foundation for his expertise in transportation systems. He earned his Ph.D. in Transportation Planning & Management from Tongji University, where he developed analytical frameworks for improving traffic efficiency and safety. He also holds a master’s degree in Road & Railway Engineering and a bachelor’s degree in Highway & Urban Road Engineering from Chang’an University, where he built a deep understanding of road design principles, traffic modeling, and urban mobility planning. His educational background has equipped him with the skills to integrate engineering theory with cutting-edge technology in transportation innovation.

Experience

In his role as Associate Professor at Fuzhou University, Dr. Wu leads research teams, mentors postgraduate students, and designs advanced courses in transportation engineering. His international experience as a Visiting Scholar at the University of Alberta broadened his research scope, allowing him to incorporate global perspectives into local infrastructure solutions. Before entering academia, he served as a Senior Engineer at the Fujian Transport Planning Bureau, where he played a key role in formulating strategies for road safety auditing, transportation policy, and network optimization. His professional portfolio includes consulting work on large-scale safety risk assessments, expressway development, and urban traffic impact studies, demonstrating his ability to apply research to practical, high-stakes projects.

Research Interest

Dr. Wu’s research spans Intelligent Transportation Systems, autonomous and connected vehicle integration, and advanced traffic safety evaluation. His work addresses congestion management, accident black spot analysis, and the development of data-driven traffic control models. He has conducted in-depth studies on traffic flow dynamics in tunnel and expressway systems under intelligent connected conditions, offering innovative solutions for speed limit control, hazard detection, and infrastructure resilience. Additionally, his research extends to transportation planning and facility design, with a focus on creating adaptable, future-ready systems that enhance mobility, safety, and sustainability.

Awards

Dr. Wu’s research leadership and his ability to translate complex engineering concepts into actionable transportation solutions have earned him professional recognition and respect. His projects, funded by prestigious scientific foundations and transportation technology programs, have directly influenced transportation safety protocols, traffic management systems, and smart vehicle integration strategies. His sustained record of impactful research positions him as an exemplary candidate for the Best Researcher Award, reflecting a career defined by innovation, practical relevance, and societal benefit.

Publications

Title: Hybrid Characteristics of Heterogeneous Traffic Flow in Intelligent Network
Journal: Journal of Southwest Jiaotong University
Published on: 2022

Title: Hybrid Characteristics of Heterogeneous Traffic Flow Under Different Aggregating Lane-Change Strategies in Intelligent Network
Journal: Journal of Southwest Jiaotong University
Published on: 2023

Title: Adaptive Variable Speed Limit Optimization Control Model for Highways
Journal: Journal of Fuzhou University (Natural Science Edition)
Published on: 2017

Title: Evolution Patterns of Heterogeneous Traffic Flow at Ramp Bottlenecks on Expressways
Journal: Journal of Guizhou University (Natural Science Edition)
Published on: 2020

Title: Fuzzy Control and Simulation of Congested Traffic Flow in Merge Bottleneck Areas Based on Chaos Theory
Journal: Journal of Guizhou University (Natural Science Edition)
Published on: 2017

Title: Quantitative Algorithm for Traffic Sign Information Based on Information Transfer Principle
Journal: Journal of Guizhou University (Natural Science Edition)
Published on: 2017

Conclusion

Dr. Dehua Wu’s career exemplifies the integration of research excellence, engineering innovation, and applied problem-solving. His contributions to intelligent transportation systems, safety management, and infrastructure optimization have influenced policy, shaped industry practices, and advanced the scientific understanding of traffic behavior. With a proven ability to deliver high-impact research and practical solutions, he stands as a leading figure in his field and an outstanding nominee for the Best Researcher Award.