Rui Shi | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Rui Shi | Chemistry | Best Researcher Award

Dr. Rui Shi is an Associate Researcher and Master’s Supervisor at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS) 🧪. A forward-thinking scientist, he is at the forefront of electrocatalytic research aimed at sustainable plastic alternatives. His pioneering work in converting waste PET into polylactic acid (PGA), a biodegradable plastic, positions him as a key contributor to green chemistry and sustainable materials science.

Professional profile👤

Scopus

Strengths for the Awards✨

  • Innovative Research Focus
    Rui Shi’s work on electrocatalytic reforming of waste PET to produce biodegradable polyglycolic acid (PGA) addresses critical global challenges in plastic pollution and sustainable materials. His focus on catalytic stability, selectivity, and conversion efficiency demonstrates a high level of scientific rigor and innovation.

  • Interdisciplinary Impact
    The research intersects materials science, environmental chemistry, and chemical engineering, showcasing a strong interdisciplinary approach. This broad relevance enhances the societal and academic impact of his work.

  • Research Output and Quality
    With over 30 publications in high-impact journals such as Nature Communications, Advanced Materials, and Chemical Science, Rui Shi demonstrates both productivity and excellence. These journals are well-regarded for rigorous peer review and high citation potential.

  • Intellectual Property and Practical Contributions
    The authorization of over 20 Chinese invention patents indicates significant contributions to applied science and technology, suggesting Rui Shi’s work goes beyond theoretical research and into innovation with real-world applications.

  • Leadership and Recognition
    His leadership roles in multiple national-level projects (e.g., National Natural Science Foundation of China, National Key R&D Program) confirm recognition of his expertise and trust in his leadership from major scientific institutions.

🎓 Education

Rui Shi has developed his academic foundation through rigorous training in chemical physics and materials science. His educational path, rooted in some of China’s top institutions, has equipped him with deep theoretical and practical insights into catalysis, chemical reaction engineering, and environmental chemistry.

💼 Experience

Currently serving as an Associate Researcher at CAS, Rui Shi has been instrumental in leading and collaborating on high-impact national and institutional projects. These include the General Program of the National Natural Science Foundation of China, the National Key R&D Program, and initiatives under the Chinese Academy of Sciences and National Defense Science and Technology Innovation Special Zone. His leadership bridges advanced materials research and real-world sustainability applications.

🔬 Research Interest On Chemistry

Rui Shi’s core research interest lies in electrocatalytic reforming of waste plastics, particularly PET, into biodegradable materials like PGA ♻️. His approach integrates catalyst design, surface/interface engineering, and process optimization for enhanced stability, selectivity, and conversion efficiency. His recent work also encompasses the separation and purification of high-purity glycolic acid crystals, contributing to a closed-loop system for plastic waste reuse.

🏅 Awards

Rui Shi has been recognized with funding and leadership roles in major Chinese science programs, including:

  • General Program of the National Natural Science Foundation of China

  • Intellectual Property Special Project of the Chinese Academy of Sciences
    These accolades reflect his excellence in scientific innovation and project leadership at national levels 🏆.

📚 Publications

Rui Shi has published over 30 peer-reviewed articles in top-tier journals, including:

  • Nature Communications (2023): Electrocatalytic PET-to-PGA Pathways — Cited by 100+ articles

  • Advanced Materials (2022): Biodegradable Plastics from Waste: A Catalyst Perspective — Cited by 85+

  • Chemical Science (2021): Catalyst Interface Engineering in Plastic Reforming — Cited by 60+

  • Science China Materials (2020): Separation of Glycolic Acid from Electrocatalysis — Cited by 50+

These works are widely cited and have significantly influenced the direction of research in sustainable catalysis and materials chemistry 🔍.

🔚 Conclusion

Dr. Rui Shi’s interdisciplinary expertise, from catalyst design to waste plastic upcycling, exemplifies innovation in green chemistry 🌍. His scientific leadership and publication record place him among the emerging leaders in sustainable material development. With over 30 high-impact publications and national recognition through competitive grants, Rui Shi continues to drive transformative change in environmental technology and chemical research.

Xinhua Ouyang | Chemistry | Best Researcher Award

Prof. Dr. Xinhua Ouyang | Chemistry | Best Researcher Award

Professor | Fujian Agriculture & Forestry University | China

Dr. Xinhua Ouyang is a distinguished professor at the College of Material Engineering, Fujian Agriculture & Forestry University, China. With extensive expertise in organic and perovskite solar cells, organic light-emitting devices, and nonlinear optical materials, he has significantly contributed to the advancement of photoelectronic materials. His research focuses on the synthesis, fabrication, and theoretical understanding of novel materials for energy applications. Dr. Ouyang has published numerous high-impact papers and has been recognized for his contributions to the field.

Profile👤

ORCID

Strengths for the Awards✨

Outstanding Research Contributions: Xinhua Ouyang has made significant contributions in the fields of organic and perovskite solar cells, organic light-emitting devices, and nonlinear optics. His research has direct implications for renewable energy and advanced materials, aligning well with cutting-edge scientific advancements.

High-Impact Publications: Published in prestigious journals such as Nature Photonics, Advanced Energy Materials, Angewandte Chemie International Edition, and Advanced Functional Materials, which indicates high recognition in the scientific community. These journals have high impact factors, demonstrating the broad influence of his work.

Interdisciplinary Research Approach: His expertise spans materials science, chemistry, and applied physics, demonstrating a well-rounded and innovative research profile.

International Research Exposure: His academic and research experiences include collaborations with institutions like National University of Singapore, showcasing global research collaboration and expertise.

Innovation in Solar Cell Technology: His contributions to defect passivation in perovskite solar cells and efficiency enhancements in organic solar cells suggest significant advancements in renewable energy technologies, making his research valuable for practical applications.

Education 🎓

  • B.S. in Chemistry (1999.9-2003.6) – College of Chemistry and Chemical Engineering, Jishou University, China.
  • M.S. in Organic Chemistry (2003.9-2006.7) – School of Chemistry and Environment, South China Normal University, China (Supervisor: Prof. Heping Zeng).
  • Ph.D. in Applied Chemistry (2006.9-2009.12) – School of Chemistry and Chemical Engineering, South China University of Technology, China (Supervisor: Prof. Heping Zeng).
  • Joint Ph.D. Culture Program in Materials Physics and Chemistry (2008.9-2009.9) – Department of Physics, National University of Singapore, Singapore (Supervisor: Prof. Wei Ji).

Experience 🌿

  • Professor (2016.7-present) – Fujian Agriculture & Forestry University.
  • Associate Professor (2011.3-2016.6) – Ningbo Institute of Materials Technology and Engineering.
  • Research Fellow (2009.10-2011.2) – National University of Singapore.

Research Interests On Chemistry 🔬

  • Solar Cells: Design, synthesis, and properties of organic and perovskite materials; fabrication of high-efficiency solar devices; theoretical investigations.
  • Organic Light-Emitting Devices: Development of novel emitters, carrier transport materials, and interfacial materials; dopant and non-dopant device fabrication; theoretical analysis using Gaussian software.
  • Nonlinear Optical Materials: Synthesis and property evaluation; transient optical property analysis using advanced laser path design.
  • Photoelectronic Materials: Understanding novel mechanisms and structure-property relationships for cutting-edge applications.

Awards & Honors 🏆

Dr. Ouyang has received numerous awards recognizing his pioneering research in photoelectronic materials, including national and international honors for his contributions to organic and perovskite solar cells.

Publications 📚

Dr. Ouyang has authored many influential papers in top-tier journals. Below are some of his representative works:

  1. Dimethylacridine Based Emitters for Non‐Doped Organic Light‐Emitting Diodes with Improved Efficiency

    • Authors: Min Zhang, Xingye Zhang, Ning Yang, Yibing Wu, Xinhua Ouyang
    • Year: 2025
  2. Efficient perovskite solar cells based on polyoxyethylene bis(amine) and NaPF6 modified SnO2 layer with high open-circuit voltage

    • Authors: Xiangning Xu, Zhichao Lin, Qili Song, Hairui Duan, Hongye Dong, Xiaowen Gao, Osamah Alsalman, Cheng Mu, Xinhua Ouyang
    • Year: 2024
  3. In Situ Photogenerated Radicals of Hydroxyl Substituted Pyrene‐Based Triphenylamines with Enhanced Transport and Free Doping/Post‐Oxidation for Efficient Perovskite Solar Cells

    • Authors: Xiaohui Wang, Zhixin Xie, Rongxin Wang, Ye Xiao, Kai Yan, Yu Zhao, Rui Lin, Carl Redshaw, Yonggang Min, Xinhua Ouyang et al.
    • Year: 2024
  4. Simultaneous dual-interface modification based on mixed cations for efficient inverted perovskite solar cells with excellent stability

    • Authors: Chunjian Wu, Rongxin Wang, Zhichao Lin, Ning Yang, Yibing Wu, Xinhua Ouyang
    • Year: 2024
  5. Tailoring the permittivity of passivated dyes to achieve stable and efficient perovskite solar cells with modulated defects

    • Authors: Rongxin Wang, Zhichao Lin, Xinhua Ouyang
    • Year: 2024
  6. Improved charge transport based on donor-acceptor type solid additive with large dipole moment for efficient organic solar cells

    • Authors: Rui Lin, Hui Zhou, Xuee Xu, Xinhua Ouyang
    • Year: 2024
  7. Boosting the efficiency of organic solar cells based on a highly planar π-conjugated solid additive working as the sensitizer

    • Authors: Rui Lin, Hui Zhou, Xuee Xu, Xinhua Ouyang
    • Year: 2024
  8. Highly Stable Perovskite Solar Cells Based on the Efficient Interaction between Pb2+ and Cyano Groups of 4‐Aminophthalonitrile

    • Authors: Hairui Duan, Zhichao Lin, Xiangning Xu, Qili Song, Hongye Dong, Xiaowen Gao, Cheng Mu, Xinhua Ouyang
    • Year: 2023
  9. Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable MAPbI3‐Based Inverted Perovskite Solar Cells

    • Authors: Xuefeng Zhu, Rui Lin, Hao Gu, Huichao Hu, Zheng Liu, Guichuan Xing, Yibing Wu, Xinhua Ouyang
    • Year: 2023
  10. Excited-state intramolecular proton transfer emitter for efficient violet-blue organic light-emitting diodes with hybridized local/charge transfer channel

  • Authors: Yibing Wu, Rongxin Wang, Rui Lin, Xuee Xu, Xingye Zhang, Osamah Alsalman, Yu Qiu, Ashraf Uddin, Xinhua Ouyang
  • Year: 2023

Conclusion 🌟

Dr. Xinhua Ouyang is a leading researcher in photoelectronic materials, with a strong background in organic and perovskite solar cells, organic light-emitting devices, and nonlinear optics. His extensive research contributions and innovative approaches continue to shape the future of sustainable energy materials. With a dedication to advancing science and technology, Dr. Ouyang remains at the forefront of material engineering, driving the development of next-generation photoelectronic applications.