Bojiang Yin | Engineering | Best Researcher Award

Mr. Bojiang Yin | Engineering | Best Researcher Award

School of Petrochemical Engineering, Lanzhou University of Technology | China

Mr. Bojiang Yin’s research primarily focuses on the fundamental and applied aspects of special valve design and process systems, with an emphasis on structural parameter optimization, reliability engineering, and multi-physics coupling dynamics. His work addresses critical challenges in extreme operating environments, such as ultra-low temperature liquid hydrogen systems, by developing innovative sealing structures and evaluating their performance using advanced computational approaches. He has employed techniques including thermo-mechanical coupling, sensitivity analysis, high-precision RBF surrogate modeling, and NSGA-II optimization to achieve reliable bidirectional sealing under cryogenic conditions. Bojiang has published in high-impact journals like Scientific Reports, contributing to the scientific understanding of valve mechanics and optimization methodologies. He has collaborated with the National Natural Science Foundation of China, the Double First-Class Key Program of Gansu Province, and other regional technology programs, bridging academic research with practical industry applications. His contributions extend to consultancy projects, product development, and providing references for the design of advanced butterfly valves, positioning him as an emerging researcher in valve innovation and cryogenic system reliability.

Profile: ORCID

Featured Publications

Li, S., Yin, B., Wei, C., Li, W., & Yang, L. (2025). Structural analysis and multi-objective optimization of sealing structure for cryogenic liquid hydrogen triple-offset butterfly valve. Scientific Reports, 15, Article 20095. https://doi.org/10.1038/s41598-025-20095-6

Amin Reza Kalantari Khalil Abad | Engineering | Best Researcher Award

Dr. Amin Reza Kalantari Khalil Abad | Engineering | Best Researcher Award

Iran University of Science and Technology | Iran

Dr. Amin Reza Kalantari Khalil Abad is a distinguished researcher and Lecturer in Industrial Engineering at Iran University of Science and Technology, Tehran, specializing in system optimization and sustainable supply chain design. He earned his Ph.D. in Industrial Engineering from Iran University of Science and Technology (2024), focusing on designing resilient horticultural supply chains under pest disruption, and holds an M.Sc. in Industrial Engineering (System Optimization) from Kharazmi University and a B.Sc. from Meybod University, Iran. His research expertise spans decision-making, operations research, mathematical modeling, and optimization, with emphasis on sustainable, resilient, and circular supply chain networks under uncertainty. Dr. Amin Reza Kalantari Khalil Abad has extensive teaching experience as a lecturer and teaching assistant in logistics, supply chain management, operations research, and software applications including GAMS and MiniTab. He has published six high-impact journal articles, including in the Journal of Environmental Management (2025), Journal of Industrial Information Integration (2025), Computers & Chemical Engineering (2024, 2023), Journal of Cleaner Production (2024), and Applied Soft Computing (2023). His work has been cited 57 times by 51 documents, achieving an h-index of 5 according to Scopus. Recognized as Top Ph.D. Student in Education (2021–2022) and Research (2023–2024), he also serves as a reviewer for leading journals and international conferences. Through his innovative research integrating optimization techniques, sustainable development, and supply chain resiliency, Dr. Amin Reza Kalantari Khalil Abad has significantly contributed to advancing both academic knowledge and practical applications, making him a highly deserving candidate for the Best Researcher Award.

Profile: Scopus | Google Scholar | ORCID | ResearchGate | LinkedIn

Featured Publications

  • Alizadeh, M., Kalantari Khalil Abad, A. R., Jahani, H., & Makui, A. (2023). Prevention of post-pandemic crises: A green sustainable and reliable healthcare supply chain network design for emergency medical products. Journal of Cleaner Production, 139702. https://doi.org/10.1016/j.jclepro.2023.139702

  • Kalantari Khalil Abad, A. R., Barzinpour, F., & Pishvaee, M. S. (2023). Toward circular economy for pomegranate fruit supply chain under dynamic uncertainty: A case study. Computers & Chemical Engineering, 178, 108362. https://doi.org/10.1016/j.compchemeng.2023.108362

  • Kalantari Khalil Abad, A. R., & Pasandideh, S. H. R. (2022). Green closed-loop supply chain network design with stochastic demand: A novel accelerated Benders decomposition method. Scientia Iranica, 29(5), 2578–2592. https://doi.org/10.24200/sci.2022.55657

  • Kalantari Khalil Abad, A. R., Barzinpour, F., & Pishvaee, M. S. (2023). Green and reliable medical device supply chain network design under deep dynamic uncertainty: A novel approach in the context of COVID-19 outbreak. Applied Soft Computing, 110964. https://doi.org/10.1016/j.asoc.2023.110964

  • Kalantari Khalil Abad, A. R., & Pasandideh, S. H. R. (2021). Green closed-loop supply chain network design: A novel bi-objective chance-constraint approach. RAIRO-Operations Research, 55(2), 811–840. https://doi.org/10.1051/ro/2021035

Weimin Huang | Engineering | Best Researcher Award

Assist. Prof. Dr. Weimin Huang | Engineering | Best Researcher Award

Shandong University of Science and Technology | China

Dr. Weimin Huang, Academic Associate Professor at the College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, is a leading expert in mechanical manufacturing and automation, with a focus on high-speed cutting technology, friction and fatigue wear mechanisms, and advanced agricultural machinery design. He earned his Ph.D. in Mechanical Manufacturing and Automation from Shandong University, establishing a strong foundation for his research and academic contributions. Dr. Weimin Huang has successfully led over 10 major research projects, including funding from the National Natural Science Foundation of China, and the Natural Science Foundation of Shandong Province, and has directed more than 20 industry-sponsored consultancy projects, effectively translating scientific insights into practical engineering solutions. His pioneering work on surface texture preparation via ball-end milling has significantly enhanced wear resistance and tribological performance of mechanical components, while his studies on sliding fatigue wear mechanisms have improved the durability and efficiency of industrial and agricultural equipment. He has published 37 Scopus-indexed journal articles, with 311 citations and an H-index of 11. Through his sustained research, innovation, and applied engineering contributions, Dr. Weimin Huang has established himself as a prominent scholar and a driving force in advancing mechanical manufacturing technologies.

Profile: Scopus

Featured Publications

1. Wang, G., Li, H., Wang, Z., & Jiang, D. (2025, May). Research on surface integrity and corrosion performance in high-speed ball-end milling of NiTi shape memory alloys.

2. Yang, J., Gong, C., Li, A., & Wang, P. (2025, March). Research on NiTi shape memory alloy electrolyte based on optimization of corrosion performance.

3. Huang, W., Huang, Y., Li, A., & Wang, G. (2024, November). Generation mechanism and anti-friction effect evaluation of continuous micro-groove texture machined by ball-end milling process.

4. Gao, L., Zhou, X., Huang, W., & Xia, H. (2024, February). Generation method and antifriction performance evaluation of discrete micro-pit surface texture based on high speed ball-end milling process.

5. Wang, G., Gong, C., Yang, J., & Wang, P. (2024, February). Electrochemical reaction mechanism of milled surface of NiTi shape memory alloy.

6. Gao, L., Wang, J., Huo, H., & Wang, Z. (2024, February). Residual height of surface topography in milling nickel-titanium shape memory alloy using a small-diameter cutter.

Tian Zhang | Engineering | Best Researcher Award

Dr. Tian Zhang | Engineering | Best Researcher Award

Xi’an University of Architecture and Technology | China

Dr. Zhang Tian, a Master’s student in Structural Engineering at Xi’an University of Architecture and Technology, has built an impressive academic and research profile distinguished by consistent excellence, leadership, and early scholarly impact. He completed his undergraduate studies at Huanghuai University, where he was recognized as a “Three Good Student” for four consecutive years, awarded multiple academic scholarships, and graduated as an Outstanding Graduate. His achievements also include winning the third prize in the Challenge Cup of the School of Civil Engineering and being honored as an Outstanding Communist Youth League Member, distinctions that reflect his ability to combine academic rigor with innovation and service. At the graduate level, he has continued to excel, receiving an academic scholarship in 2022–2023 while advancing research in seismic-resistant structures, sustainable construction materials, and structural design optimization, areas vital to the development of safe and environmentally responsible infrastructure. Despite being in the early stage of his research career, Dr. Zhang Tian has already made notable scholarly contributions, with 6 publications indexed in Scopus, accumulating 69 citations from 68 documents, and achieving an h-index of 5. These metrics demonstrate that his work is not only visible but also valued within the global academic community. Combining strong academic performance, proven research productivity, and a clear vision for advancing structural engineering, Dr. Zhang Tian exemplifies the qualities of an emerging scholar whose contributions are poised to strengthen the safety, resilience, and sustainability of modern construction.

Profile: Scopus

Featured Publications

Xu, Y., Xu, Z.-D., Hu, H., Guo, Y.-Q., Huang, X.-H., Zhang, Z.-W., Zhang, T., & Xu, C. (2025). Experiment, simulation, and theoretical investigation of a new type of interlayer connections enhanced viscoelastic damper. International Journal of Structural Stability and Dynamics, 25(5), Article 2550045.