Xinxin Wang | Engineering | Best Researcher Award

Mr. Xinxin Wang | Engineering | Best Researcher Award

North China Electric Power University | China

Xinxin Wang is a driven and innovative PhD candidate at North China Electric Power University, whose work bridges advanced theoretical research with practical engineering solutions. With a strong foundation in machinery and power engineering, he has developed expertise in the design, analysis, and optimization of underground tunneling equipment, particularly Tunnel Boring Machines (TBMs). His career reflects a deep commitment to solving complex challenges in rock mechanics and engineering, supported by collaborative efforts with leading experts in China and abroad. His predictive models and design methods have significantly advanced tunneling efficiency, making him a promising leader in his field.

Professional Profile

Scopus

ORCID

Education

Xinxin Wang earned a Master’s degree in Machinery and Engineering from Inner Mongolia University of Science and Technology, followed by doctoral studies in Power Machinery and Engineering at North China Electric Power University. Selected for the prestigious National “Excellent Engineer Program,” he broadened his academic exposure through a joint doctoral program as a visiting scholar at the University of Pisa, Italy. This international engagement allowed him to integrate advanced European engineering practices with domestic innovation, enriching his academic and professional capabilities in tunneling technology and rock-breaking mechanics.

Experience

Xinxin Wang has actively participated in multiple national-level research projects, including those funded by the National Natural Science Foundation of China and the National High Technology Research and Development Program. His contributions extend to the development of proprietary software for calculating rock-breaking forces in TBM disc cutters and the creation of new cutterhead designs capable of handling varied geological conditions. He works closely with industry and academic partners to ensure his research outcomes are implemented in real-world projects, thus enhancing the efficiency, reliability, and cost-effectiveness of large-scale underground excavation.

Research Interest

His research focuses on intelligent control systems and energy efficiency analysis for advanced underground construction equipment, particularly TBMs. He is deeply engaged in studying the collaborative rock-breaking mechanism of disc cutters, developing predictive models for cutter forces and cutterhead torque, and designing innovative solutions to optimize performance in diverse geological settings. Additionally, his expertise spans rock mechanics, structural analysis, and the integration of advanced computational modeling techniques into engineering practice.

Awards

Xinxin Wang has received recognition for his scholarly achievements through competitive doctoral scholarships and honors for academic excellence. His innovative contributions to TBM rock-breaking mechanics, cutterhead design, and excavation efficiency have been widely acknowledged in professional circles. These recognitions underscore his potential to make sustained and transformative contributions to the tunneling and underground engineering sector, making him a strong candidate for the Best Researcher Award.

Publications

Title: Investigation into the Rock-Breaking Forces of TBM Disc Cutters with Diverse Edge Shapes
Journal: Rock Mechanics and Rock Engineering
Published on: 2025

Title: Study on the Rock-Breaking Forces of TBM Disc Cutters with Uneven Wear
Journal: Chinese Journal of Theoretical and Applied Mechanics
Published on: 2025

Title: Study on Fatigue Characteristics of High-Pressure Vessel with Multiple Cracks in Stages
Journal: Mechanical Design and Manufacturing
Published on: 2024

Title: Allowable Limit of Crack Defect Zone Evaluation under Expected Life of Ultra-high Pressure Vessel Head
Journal: Thermal Processing Technology
Published on: 2024

Conclusion

By combining theoretical innovation with real-world engineering solutions, Xinxin Wang has made impactful contributions to the science and technology of tunnel boring and underground excavation. His research has not only improved operational efficiency but has also reduced construction costs and enhanced safety in challenging environments. With proven academic excellence, international collaboration experience, and a strong record of published work, he exemplifies the qualities of a dedicated and forward-thinking researcher worthy of the Best Researcher Award.

Servet Giray Hacipasaoglu | Engineering | Best Researcher Award

Dr. Servet Giray Hacipasaoglu | Engineering | Best Researcher Award

Kocaeli University | Turkey

Dr. Servet Giray Hacipaşaoğlu is a dynamic researcher specializing in thermal systems, energy efficiency, and eco-friendly refrigeration technologies. Currently affiliated with Kocaeli University, Turkey, he has shown remarkable commitment to advancing thermodynamic systems by merging innovative cycle designs and nanoparticle-enhanced refrigerants. His work is known for its depth in sustainability, environmental consciousness, and advanced performance analysis, making him a standout contributor to modern mechanical engineering research.

Professional profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

Dr. Servet Giray Hacipaşaoğlu stands out as a highly dedicated and impactful researcher in the field of mechanical engineering, with a focused specialization in thermodynamics, energy systems, and refrigeration technologies. His academic journey reflects consistent excellence, culminating in a doctoral dissertation on ultra-low temperature applications using ejector and nanoparticle-enhanced cascade cycles, showcasing innovation in both thermal efficiency and environmental sustainability.

Dr. Hacipaşaoğlu’s impressive publication record in SCI-indexed journals such as Applied Thermal Engineering, International Journal of Refrigeration, and Energy Technology—with cutting-edge topics like organic Rankine cycles and eco-friendly refrigerants—demonstrates his pioneering role in sustainable energy research. Moreover, his interdisciplinary project involvement in sustainable energy infrastructure funded by higher education institutions highlights both his practical impact and research leadership.

🎓 Education

Dr. Hacipaşaoğlu earned his Doctorate in Mechanical Engineering from Kocaeli University (2019–2024), where he investigated thermoeconomic and environmental performance of advanced cascade refrigeration cycles. He previously completed his MSc at Dokuz Eylul University (2017–2019), focusing on phase change materials, and BSc in Mechanical Engineering from the same institution (2011–2016). His strong academic foundation is complemented by a series of rigorous dissertation projects aimed at low-temperature energy applications.

🧑‍🏫 Experience

He has served as a Research Assistant at Kocaeli University since 2018, transitioning to a PhD-level Research Assistant in 2024. In parallel with his academic responsibilities, he has also contributed to industrial R&D at Bosch Termoteknik, applying academic insights in practical engineering environments. His teaching roles include foundational and specialized mechanical engineering courses such as Thermodynamics, Refrigeration, and Heat Design Projects.

🔬 Research Interests On Engineering

Dr. Hacipaşaoğlu’s research focuses on energy systems, thermodynamic modeling, low-global-warming-potential refrigerants, and nano-enhanced thermal fluids. His work pushes the frontiers of ejector refrigeration, organic Rankine cycles, and thermal energy storage, aimed at developing sustainable energy solutions for ultra-low-temperature applications.

🏆 Awards & Recognitions

While specific individual awards are not listed, Dr. Hacipaşaoğlu’s recognition in high-impact SCI-indexed journals, peer-reviewed conference presentations, and review contributions to reputable journals such as Journal of the Brazilian Society of Mechanical Sciences and Engineering and International Journal of Heat and Fluid Flow reflect his growing prominence in the scientific community.

📚 Publications

  • Implementation of enhanced thermal conductivity approach to an LHTES system with in‐line spherical capsules
    Authors: C. Metin, S.G. Hacipasaoglu, E. Alptekin, M.A. Ezan
    Year: 2019
    Cited by: 5

  • Thermodynamic Performance Analysis and Environmental Impact Assessment of Cascade Refrigeration Cycles Using Eco-Friendly Nano-Refrigerants
    Authors: S.G. Hacipaşaoğlu, İ.T. Öztürk
    Year: 2024
    Cited by: 3

  • An application of conventional and advanced exergy approaches on a R41/R1233ZD (E) cascade refrigeration system under optimum conditions
    Authors: C. Aktemur, S.G. Hacipasaoglu
    Year: 2022
    Cited by: 3

  • Assessment of an integrated organic Rankine cycle (ORC)-vapor compression refrigeration (VCR) system using the energy, conventional exergy, and advanced exergy analysis
    Authors: C. Aktemur, S.G. Hacipasaoglu
    Year: 2021
    Cited by: 3

  • Thermodynamic and Environmental Analysis of Novel Cascade Refrigeration Cycles with Ejector and Intercooler for Ultralow Temperatures Using Eco‐Friendly Refrigerants
    Authors: S.G. Hacıpaşaoğlu, İ.T. Öztürk
    Year: 2024
    Cited by: 2

  • Energy and exergy analysis in the ejector expansion refrigeration cycle under optimum conditions
    Authors: S.G. Hacıpaşaoğlu, İ. Tekin Öztürk
    Year: 2023
    Cited by: 2

  • Methods to Increase the Coefficient of Performance of Refrigeration cycles in Low-Temperature Applications: A review
    Authors: S.G. Hacipasaoglu, İ.T. Öztürk
    Year: 2025

  • A novel organic Rankine cycle-ejector booster refrigeration cycle for low-temperature sources
    Author: S.G. Hacıpaşaoğlu
    Year: 2025

  • Thermoeconomic analysis and optimization of cascade refrigeration cycles incorporating ejector and environmentally friendly nano-refrigerant: a comparison study
    Authors: S.G. Hacipaşaoğlu, İ.T. Öztürk
    Year: 2025

  • Comparison of different refrigeration cycles using nanoparticle additive for low-temperature applications: A thermoeconomic analysis
    Author: S.G. Hacipaşaoğlu
    Year: 2025

📑 Conclusion

In conclusion, Dr. Servet Giray Hacipaşaoğlu exemplifies academic excellence, practical innovation, and a strong commitment to sustainable engineering. His contributions in the realm of low-temperature thermodynamic systems have already garnered significant scholarly attention. With a solid publication record 📘, deep industrial insight, and active community involvement through reviews and conferences, he is an exceptional candidate for the Best Researcher Award 🏅.