Waseem Shoukat | Chemistry and Materials Science | Editorial Board Member

Dr. Waseem Shoukat | Chemistry and Materials Science | Editorial Board Member

Institute of Chemical Sciences, Bahauddin Zakariya University | Pakistan

Dr. Waseem Shoukat is an emerging and increasingly recognized researcher in organic synthesis, medicinal chemistry, and bioinformatics, with a rapidly expanding contribution to the development of thiosemicarbazone-based therapeutic candidates and advanced functional materials. His research portfolio reflects a strong integration of synthetic chemistry, spectroscopic characterization, molecular docking, biological screening, and nanomaterials engineering, enabling the discovery of compounds with significant antibacterial, antioxidant, and antidiabetic potential. His notable work on thiosemicarbazones, particularly the WS-1 and WS-2 ligands, has demonstrated exceptional binding affinities toward alpha-glucosidase, highlighting their promise as lead molecules for future pharmaceutical development. He has published in reputable international journals such as Journal of Molecular Structure, RSC Advances, Inorganic Chemistry Communications, and Natural Product Communications, contributing findings related to MOF-based drug delivery systems, electrochemical behavior of modified nanostructures, graphene oxide functionalization, coordination polymer electrocatalysis, and plant stress mitigation strategies. His interdisciplinary collaborations extend into areas of environmental microbiology, hydrocarbon-degrading microorganisms, natural dyeing applications, and aquaculture-related sustainability research. According to Google Scholar, he has produced a growing body of scholarly output with 71 citations, an h-index of 4, and an i10-index of 3, demonstrating steady research impact. His computational expertise includes the use of Molegro, Schrödinger Suite, PyRx, and Discovery Studio, supporting predictive modeling and structure–activity relationship analysis. Through his diverse publications, analytical capabilities, and innovative research approaches, Waseem Shoukat continues to contribute meaningfully to advances in medicinal chemistry, materials science, environmental biotechnology, and emerging functional materials.

Profiles: Google Scholar

Featured Publications

• Haidri, I., Qasim, M., Shahid, M., Farooq, M. M., Abbas, M. Q., Fatima, R., & Ullah, Q. (2024). Enhancing the antioxidant enzyme activities and soil microbial biomass of tomato plants against the stress of sodium dodecyl sulfate by the application of bamboo biochar. Remittances Review, 9(2), 1609–1633.

• Shoukat, W., Hussain, M., Ali, A., Shafiq, N., Chughtai, A. H., Shakoor, B., … (2025). Design, synthesis, characterization and biological screening of novel thiosemicarbazones and their derivatives with potent antibacterial and antidiabetic activities. Journal of Molecular Structure, 1320, 139614.

• Qayyum, I., Rehman, F. U., Zahra, M., Batool, K., Shoukat, W., Arshad, S., & Zada, Z. (2023). Progressive innovations in advanced functional materials for emerging bio-electronics, drug sensing and healthcare. Journal of Drug & Alcohol Research, 12(5).

• Ain, Q., Nazli, Z. H., Aslam, M., Zafar, I., Afridi, H. I., Unar, A., Jamshaid, M., … (2024). Multifunctional analysis of banana leaves extracts for dyeing properties of pima cotton fabric using different mordants. Natural Product Communications, 19(2), 1934578X241231463.

• Ishfaq, M., Lateef, D., Ashraf, Z., Sajjad, M., Owais, M., Shoukat, W., Mohsin, M., … (2025). Zirconium-based MOFs as pH-responsive drug delivery systems: Encapsulation and release profiles of ciprofloxacin. RSC Advances, 15(33), 26647–26659.

Elżbieta Radziszewska-Zielina | Engineering | Best Researcher Award

Prof. Dr. Elżbieta Radziszewska-Zielina | Engineering | Best Researcher Award

Cracow University of Technology | Poland

Prof. Dr. Elżbieta Radziszewska-Zielina is a distinguished researcher from Politechnika Krakowska, Krakow, Poland, widely recognized for her pioneering work in civil engineering, sustainable construction management, and intelligent systems for project engineering. Her research bridges technical innovation, computational modeling, and sustainability principles to enhance efficiency, environmental responsibility, and resilience in the built environment. She has published 59 scientific papers indexed in Scopus, which have collectively received 838 citations, yielding a Scopus h-index of 20, reflecting her strong academic influence and international recognition. Her studies focus on modern construction materials, energy-efficient building technologies, blue-green infrastructure, and systemic approaches to reducing greenhouse gas emissions in urban construction. Her innovative use of computational techniques—including type-1 and type-2 fuzzy logic, stochastic networks, multi-criteria decision analysis, and optimization algorithms—has advanced the understanding and practical application of complex construction processes. Prof. Dr. Elżbieta Radziszewska-Zielina’s notable research outputs include the development of decision-support systems for construction planning, models for adaptive reuse of historic buildings, and optimization frameworks for nearly zero-energy buildings. She has contributed to key international research and educational projects funded by the National Science Centre (NCN), National Centre for Research and Development (NCBR), Horizon 2020, and other European programs. Her editorial leadership includes guest editing special issues in Sustainability, Polymers, and Open Engineering, and serving on the boards of Archives of Civil Engineering and Selected Scientific Papers – Journal of Civil Engineering.

Profiles: Scopus | Google Scholar | ORCID | ResearchGate

Featured Publications

  • Kania, E., Radziszewska-Zielina, E., & Śladowski, G. (2020). Communication and information flow in Polish construction projects. Sustainability, 12(21), 9182. https://doi.org/10.3390/su12219182

  • Radziszewska-Zielina, E., & Śladowski, G. (2017). Supporting the selection of a variant of the adaptation of a historical building with the use of fuzzy modelling and structural analysis. Journal of Cultural Heritage, 26, 53–63. https://doi.org/10.1016/j.culher.2017.02.007

  • Radziszewska-Zielina, E., Śladowski, G., & Sibielak, M. (2017). Planning the reconstruction of a historical building by using a fuzzy stochastic network. Automation in Construction, 84, 242–257. https://doi.org/10.1016/j.autcon.2017.09.005

  • Radziszewska‐Zielina, E. (2010). Methods for selecting the best partner construction enterprise in terms of partnering relations. Journal of Civil Engineering and Management, 16(4), 510–520. https://doi.org/10.3846/jcem.2010.57

  • Korytárová, J., Hanák, T., Kozik, R., & Radziszewska–Zielina, E. (2015). Exploring the contractors’ qualification process in public works contracts. Procedia Engineering, 123, 276–283. https://doi.org/10.1016/j.proeng.2015.10.084

Haimin Li | Advanced Materials Engineering | Best Researcher Award

Prof. Haimin Li | Advanced Materials Engineering | Best Researcher Award

Southwest Petroleum University | China

Prof. Haimin Li is a distinguished researcher and Associate Professor at the School of New Energy and Materials, Southwest Petroleum University, Chengdu, China. A recognized high-level overseas-educated talent in Sichuan Province, she has significantly contributed to the development and innovation in perovskite solar cell technology. As a member of the Chinese Photovoltaic Industry Platform Expert Committee and a former visiting scholar at Purdue University, she brings international experience and technical excellence to her work. Dr. Li also serves as a reviewer and guest editor for renowned international journals, and has co-authored a national-level textbook under China’s 12th Five-Year Plan.

Author Profile👤

Scopus

Strengths for the Awards✨

Prof. Haimin Li stands out as a leading researcher in the field of photovoltaic materials and solar energy conversion, with particular emphasis on perovskite and perovskite/silicon tandem solar cells. Her academic credentials are robust, having earned a Ph.D. in Materials Physics and Chemistry from Sichuan University, complemented by a prestigious visiting scholar position at Purdue University. Currently an Associate Professor at Southwest Petroleum University, Dr. Li has amassed a rich portfolio of research achievements.

She has co-authored over 50 SCI-indexed publications, with many appearing in top-tier journals such as Advanced Materials, ACS Applied Materials & Interfaces, and Applied Surface Science. Notably, her most recent article published in Advanced Materials (2025) titled “Nucleation modification in Two-Step Slot-Die Coating toward efficient Large Scale Perovskite/Silicon tandems” exemplifies innovation in the scalable fabrication of tandem solar cells.

Prof. Li’s active engagement in multimillion-RMB national and provincial research projects, including major grants from the Sichuan Province and the Chengdu Science and Technology Bureau, showcases her leadership in high-impact, real-world scientific initiatives. She also contributes significantly to the academic community as a peer reviewer for elite journals and a guest editor, amplifying her influence in shaping research trends.

🎓 Education

Prof. Haimin Li’s academic journey is grounded in strong multidisciplinary foundations. She earned her Ph.D. in Materials Physics and Chemistry from Sichuan University (2008–2011), preceded by an M.Sc. in Analytical Chemistry from Chengdu University of Technology (2003–2006), and earlier, a diploma in Environmental Monitoring (1997–2000) from the same institution. Her academic path laid the groundwork for her specialization in thin-film materials and photovoltaic technologies.

💼 Experience

Prof. Li currently serves as an Associate Professor at Southwest Petroleum University (2020–present), where she previously held academic positions as Lecturer and Associate Professor in the School of Materials Science and Engineering. From 2018 to 2020, she was a Visiting Scholar at Purdue University, USA, further enhancing her global perspective. Her diverse roles reflect over a decade of experience in academia, research, and international collaboration.

🔬 Research Interests On Advanced Materials Engineering

Prof. Li’s research interests center on functional thin-film materials, solar cell materials and devices, and especially perovskite solar cell technologies. She focuses on scalable fabrication methods, interface engineering, and tandem device architectures to push the limits of photovoltaic performance and stability. Her work aims to accelerate the commercialization of next-generation energy solutions, including flexible solar cells and perovskite/silicon tandem cells.

🏆 Awards

Prof. Haimin Li has been honored with more than ten national and provincial-level awards for her academic excellence and impactful research. Her recognition as a high-level overseas-educated talent in Sichuan Province and her role in China’s strategic photovoltaic research efforts highlight her leadership and innovation in renewable energy R&D.

📚 Publications

  1. Li, H., et al. Nucleation modification in Two-Step Slot-Die Coating toward efficient Large Scale Perovskite/Silicon tandems based on commercial silicon cells, Advanced Materials, 2025.
    Cited by upcoming studies on scalable perovskite fabrication.

  2. Wei, Y., Tang, Y., Li, H.*, et al. Decreased Hysteresis Benefited from Enhanced Lattice Oxygen and Promoted Band Alignment with Electron Transport Layer Modification in Perovskite Solar Cells, ACS Applied Materials & Interfaces, 2025, 17:11278–11286.
    Widely cited in electron transport engineering research.

  3. Li, H.*, et al. Enhanced (111) orientation resulted from hydrophobic protective layer for high efficiency and ambient stability of perovskite solar cells, Applied Surface Science, 2024, 686.
    Cited by works on moisture-resistant perovskite devices.

  4. Tang, Y., Lei, Y., Li, H.*, et al. An effective oxygen vacancy restrain method for flexible perovskite solar cells with enhanced performance and bending resistance, Applied Surface Science, 2023, 641.
    Referenced in flexible photovoltaic development.

  5. Gong, X., Li, H.*, et al. Enhanced Hole Mobility and Decreased Ion Migration Originated from Interface Engineering for High Quality PSCs with Average FF beyond 80%, Small Methods, 2022, 6(6).
    Frequently cited in interface optimization strategies.

🔚 Conclusion

Prof. Haimin Li stands as a pioneering figure in the field of photovoltaic energy systems, with notable achievements in perovskite solar cell innovation and thin-film technology development. Her dedication to research, teaching, and international collaboration underlines her strong candidacy for a prestigious scientific award. Through her leadership, over 50 SCI publications, and involvement in transformative national projects, Dr. Li continues to drive forward the frontier of renewable energy research.

Zhixiong Cai | Materials | Best Researcher Award

Assoc. Prof. Dr. Zhixiong Cai | Materials | Best Researcher Award

Minnan Normal University | China

Zhixiong Cai is an Associate Professor and Master’s Supervisor at the College of Chemistry, Chemical Engineering, and Environmental Science at Minnan Normal University, located in Zhangzhou, Fujian Province, China. With expertise in luminescent materials and electrocatalysis, he has gained a reputation for his impactful research and academic contributions. His work primarily focuses on advancing materials science, particularly in the context of energy conversion and storage.

Professional profile👤

ORCID

Google Scholar

Scopus

Strengths for the Awards✨

  • Solid Educational Background: He holds a Ph.D. in Chemistry from Xiamen University and has participated in a joint training program, which suggests a deep academic foundation.

  • Research Expertise: His research interests in luminescent materials and electrocatalysis are highly relevant and cutting-edge in chemistry and environmental science.

  • International Exposure: Zhixiong Cai was a visiting scholar at the University of California, Riverside (UCR), providing him with global exposure and collaborative opportunities.

  • Impressive Publication Record: He has published several high-impact papers, including in prestigious journals like Angewandte Chemie and Nano Energy, demonstrating his contribution to significant advancements in his field.

  • Awards and Recognition: Receiving the Youth May Fourth Medal and other competition honors reflects his excellence and recognition from academic and professional communities.

Education:

Dr. Cai earned his Ph.D. in Chemistry from Xiamen University in June 2018, having completed his Master’s in Chemistry through a joint program between Fuzhou University and Xiamen University in 2014. He also holds a Bachelor’s degree in Chemistry from Fuzhou University. During his career, he spent time as a Visiting Scholar at the University of California, Riverside in 2017, further expanding his research horizons and collaborations internationally.

Experience:

Dr. Cai’s academic career began in September 2018 as a Lecturer at Minnan Normal University. By July 2019, he was promoted to Associate Professor at the same institution. His research interests have led him to participate in various national and international projects, contributing to the development of advanced chemical materials and applications.

Research Interests On Materials

Dr. Cai’s research primarily focuses on luminescent materials and electrocatalysis. His work aims to enhance energy conversion efficiencies and develop sustainable materials for a variety of applications, including renewable energy technologies. He is particularly interested in the development of high-performance catalysts and materials for environmental and energy-related solutions.

Publications:

  • Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction

    • Authors: W Xu, F Lyu, Y Bai, A Gao, J Feng, Z Cai, Y Yin

    • Year: 2018

    • Cited by: 504

  • Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid

    • Authors: X Chen, G Wu, Z Cai, M Oyama, X Chen

    • Year: 2014

    • Cited by: 414

  • AuPd bimetallic nanoparticles decorated on graphene nanosheets: their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction

    • Authors: X Chen, Z Cai, X Chen, M Oyama

    • Year: 2014

    • Cited by: 207

  • An ultrasensitive and reversible fluorescence sensor of humidity using perovskite CH₃NH₃PbBr₃

    • Authors: W Xu, F Li, Z Cai, Y Wang, F Luo, X Chen

    • Year: 2016

    • Cited by: 174

  • Green synthesis of graphene–PtPd alloy nanoparticles with high electrocatalytic performance for ethanol oxidation

    • Authors: X Chen, Z Cai, X Chen, M Oyama

    • Year: 2014

    • Cited by: 151

  • Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide

    • Authors: X Chen, Z Cai, Z Huang, M Oyama, Y Jiang, X Chen

    • Year: 2013

    • Cited by: 130

  • A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode

    • Authors: B Su, H Shao, N Li, X Chen, Z Cai, X Chen

    • Year: 2017

    • Cited by: 120

  • PtPd nanodendrites supported on graphene nanosheets: a peroxidase-like catalyst for colorimetric detection of H₂O₂

    • Authors: X Chen, B Su, Z Cai, X Chen, M Oyama

    • Year: 2014

    • Cited by: 108

  • Electrodeposition‐Assisted Synthesis of Ni₂P Nanosheets on 3D Graphene/Ni Foam Electrode and Its Performance for Electrocatalytic Hydrogen Production

    • Authors: Z Cai, X Song, Y Wang, X Chen

    • Year: 2015

    • Cited by: 88

  • Synthesis of bimetallic PtPd nanocubes on graphene with N, N-dimethylformamide and their direct use for methanol electrocatalytic oxidation

    • Authors: X Chen, Z Cai, X Chen, M Oyama

    • Year: 2014

    • Cited by: 85

Conclusion:

Dr. Zhixiong Cai is an accomplished researcher and educator, with a deep commitment to advancing the fields of luminescent materials and electrocatalysis. His academic achievements, robust publication record, and numerous accolades underscore his dedication to driving forward scientific discovery and innovation. As an active member of the academic community, his work continues to have a significant impact on material sciences and energy applications.