Danladi Abdu | Engineering | Best Researcher Award

Mr. Danladi Abdu | Engineering | Best Researcher Award

Federal University of Transportation | Nigeria

Mr. Danladi Abdu is a distinguished civil engineering researcher whose work integrates artificial intelligence, data science, and structural engineering to advance the safety and performance of transportation infrastructures. His research focuses on the intelligent assessment and predictive modeling of structural behavior in railway and bridge systems using machine learning algorithms. Through his influential publications in reputable journals such as Structures and the Journal of Railway Science and Technology, Mr. Danladi Abdu has contributed significantly to the development of AI-based approaches for monitoring bridge pier settlements and predicting fire-induced steel beam deformations. His scholarly work bridges the gap between traditional structural analysis and modern computational intelligence, offering innovative methodologies for structural health monitoring and predictive maintenance. Mr. Danladi Abdu’s research interests encompass smart infrastructure systems, railway bridge engineering, machine learning applications in civil engineering, and sustainable design innovations. Recognized for his academic excellence and innovative mindset, he has received multiple awards, including the Class of 2023 Outstanding International Graduate Student Award from Central South University and the Aier Cup Innovation and Entrepreneurship Competition Award. His contributions highlight a strong commitment to applying advanced technologies for solving complex engineering challenges, fostering safer, more efficient, and sustainable infrastructure systems. With an expanding research portfolio and a growing impact in structural and transportation engineering, Mr. Danladi Abdu continues to drive forward-thinking solutions that merge artificial intelligence with civil engineering principles to enhance infrastructure reliability and sustainability in a rapidly evolving technological landscape.

Profile: ORCID

Featured Publications

  • Abdu, D. M., Shedamang, S., Jimoh, J., & Idris, A. (2025). Prediction of fire-induced steel beam deformation using machine learning algorithms. Journal of Railway Science and Technology. https://doi.org/10.1016/j.jrst.2025.10.001

  • Abdu, D. M., Guo, W., & Wang, Y. (2023). Assessment of railway bridge pier settlement based on train acceleration response using machine learning algorithms. Structures. https://doi.org/10.1016/j.istruc.2023.03.167

Karim Heydari | Engineering | Best Researcher Award

Dr. Karim Heydari | Engineering | Best Researcher Award

Isfahan University of Technology | Iran

Dr. Karim Heydari is a distinguished scientist and academic in the field of textile engineering and polymer science, renowned for his expertise in developing sustainable and high-performance polymer composites. His research has been instrumental in transforming recycled polyethylene terephthalate (PET) into advanced textile fibers with improved mechanical integrity, flame resistance, and processability. Through innovative use of nanotechnology, eco-friendly flame-retardant systems, and molecular chain extenders, Dr. Heydari has contributed significantly to bridging environmental sustainability with industrial-scale manufacturing. His dedication to advancing polymer recycling technologies positions him as a leading figure in sustainable materials research.

Professional Profile

ORCID

Education

Dr. Heydari holds a strong academic background in textile engineering, polymer processing, and materials science, with specialized training in fiber manufacturing technologies, rheological property analysis, and nanocomposite engineering. His educational journey has provided him with a unique interdisciplinary skill set, enabling him to address challenges in polymer degradation, fiber spinning, and additive compatibility with scientifically sound and technologically viable solutions.

Experience

Throughout his career, Dr. Heydari has led and collaborated on multiple high-impact research projects focused on the optimization of recycled polymers for advanced textile applications. His work encompasses the full material development chain from feedstock selection and additive formulation to reactive extrusion, melt spinning, and product testing. He has applied advanced analytical techniques such as scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and rheological characterization to evaluate and enhance composite performance. In addition to academic publications, Dr. Heydari has actively collaborated with industrial partners to translate laboratory innovations into production-ready materials, particularly for applications demanding both performance and environmental compliance.

Research Interest

Dr. Heydari’s research interests cover a broad range of topics in sustainable material science, including polymer recycling and upcycling, flame-retardant fiber composites, nano clay dispersion technologies, rheology-driven process optimization, and environmentally friendly additive systems. He is particularly passionate about valorizing multiple-recycled PET often considered unsuitable for high-quality applications  by restoring its molecular architecture and enhancing its functional properties. His research is driven by the goal of creating textile fibers that meet rigorous mechanical, thermal, and safety standards without compromising ecological responsibility.

Awards

Dr. Heydari has gained recognition for his pioneering contributions to sustainable polymer technology and textile engineering. His innovative approach to combining zinc phosphinate flame retardants, Cloisite 30B nanoclay, and multifunctional epoxy-based chain extenders has resulted in composites with exceptional flame resistance, thermal stability, and spinnability. These advancements not only contribute to safer and more durable textile products but also support global sustainability initiatives. His ability to merge scientific innovation with industrial applicability makes him a highly deserving candidate for the Best Researcher Award.

Publications

Dr. Karim Heydari has contributed impactful research on the rheological, thermal, and mechanical enhancement of recycled polyethylene terephthalate (PET) composites, with a focus on flame retardancy and spinnability.

Title: Enhanced Spinning Properties of Chain‐Extended Flame‐Retarded Multiple‐Recycled PET/Cloisite 30B Nanocomposite
Journal: Journal of Applied Polymer Science
Published on: August 2025

Title: Rheological Probing Molecular Weight Increase in Flame Retarded Doubly Recycled PET in the Presence of Nanoclay and Investigating its Spinnability
Journal: Preprint
Published on: January 2025

Conclusion

Dr. Karim Heydari’s contributions to polymer recycling and textile engineering represent a significant step forward in the creation of sustainable, high-performance materials. His work addresses urgent environmental challenges associated with polymer waste while providing viable solutions for industrial fiber production. By integrating advanced material science with practical manufacturing processes, he continues to influence the fields of textile engineering, polymer technology, and sustainable manufacturing. His research not only pushes the boundaries of scientific understanding but also demonstrates a commitment to creating eco-conscious innovations that can be adopted across global industries.

Ziqiang Pi | Engineering | Best Researcher Award

Dr. Ziqiang Pi | Engineering | Best Researcher Award

Dr. Ziqiang Pi is a dedicated and innovative Senior Engineer at BGRIMM Technology Group, where he focuses on advanced materials engineering. Since graduating in 2019 from the University of Science and Technology Beijing, he has specialized in alloy powders, thermal spraying, and laser cladding. His contributions have led to breakthroughs in wear-resistant coatings for mining equipment, significantly improving durability and performance.

Professional profile👤

Scopus

Strengths for the Awards✨

  • Technical Expertise and Research Focus:

    • Ziqiang Pi holds a strong academic background in Materials Science and Engineering, which aligns well with his current research.

    • His focused areas—alloy powder, laser cladding, and thermal spraying—are of significant industrial and academic relevance, especially for applications in mining and heavy industries.

  • Industry Impact and Practical Contributions:

    • The development and application of wear-resistant laser cladding coatings for mining equipment, which achieved 250% service life improvement, demonstrate real-world impact.

    • His work bridges the gap between fundamental research and practical application—an essential criterion for research excellence.

  • Research Output and Recognition:

    • Published 10 journal articles (including SCI/Scopus-indexed).

    • Holder of four patents, indicating a strong orientation toward innovation.

    • Led or participated in five major research projects, including national-level grants, suggesting a capacity to secure and manage competitive funding.

  • Professional Advancement:

    • Rapid progression to Senior Engineer by 2021—within two years of graduation—signals high professional competence and recognition by his institution.

Areas for Improvement

  1. Citation Index and Academic Visibility:

    • The citation index is not quantified in the application. Including h-index, total citations, or Google Scholar link would help assess academic influence.

    • No mention of keynote talks, invited lectures, or conference participation, which could enhance visibility in the research community.

  2. Editorial Roles and Collaborations:

    • No current editorial appointments or clear international collaborations are listed. These elements would strengthen his profile by showing leadership and global integration in the research community.

🎓 Education

Ziqiang Pi earned his Bachelor’s degree in Materials Science and Engineering from the University of Science and Technology Beijing in July 2019. His education laid a strong foundation in metallurgy and materials innovation, propelling him into a research-driven engineering role at BGRIMM Technology Group.

🛠️ Experience

Since joining BGRIMM Technology Group post-graduation, Ziqiang has steadily risen in ranks, earning the title of Senior Engineer in 2021. He has managed and contributed to multiple national-level research projects funded by prestigious bodies like the National Natural Science Foundation of China and the National Key R&D Program. His work emphasizes industrial applications of coatings and materials processing. 🔍

🔬 Research Interests On Engineering

Ziqiang’s primary research interests include alloy powders, laser cladding, and thermal spraying. He is especially passionate about functional coatings that enhance the longevity and efficiency of heavy machinery in the mining sector. His innovative research bridges academic knowledge with industrial needs.

🏆 Awards

In recognition of his outstanding research and industrial contributions, Ziqiang Pi was promoted to Senior Engineer in 2021. His work has not only been acknowledged internally but has also garnered attention through national and provincial-level projects, reflecting his excellence and commitment to innovation.

📚 Publications

Ziqiang Pi has published 10 articles in reputable journals. Selected key publications include:

His publications reflect strong engagement with applied research that supports industrial innovation.

🔚 Conclusion

Ziqiang Pi exemplifies the synergy between engineering innovation and practical impact. His pioneering work in developing wear-resistant laser cladding coatings has directly enhanced mining equipment performance and longevity. With a consistent track record in research, publication, and project execution, he stands as a promising candidate for recognition in research excellence awards.