Surakasi Raviteja | Engineering | Excellence in Research Award

Assist. Prof. Dr. Surakasi Raviteja | Engineering | Excellence in Research Award

Lendi Institute of Engineering and Technology | India

Dr. Surakasi Ravi Teja is a dedicated researcher whose work spans thermal engineering, nanofluids, biofuels, heat transfer augmentation, sustainable energy systems, and advanced materials science. His research expertise includes the experimental evaluation of thermophysical properties, development of nanomaterial-enhanced solar thermal fluids, ANN-based predictive modeling, biodiesel and pyrolysis-fuel combustion analysis, and CFD-driven optimization of thermal devices. With 77 Scopus-indexed publications, 960 citations, and an h-index of 17, he has established a strong scientific presence, contributing extensively to high-impact Scopus-, SCI-, and SCIE-indexed journals such as Frontiers in Heat and Mass Transfer, Journal of Nanomaterials, Materials Today: Proceedings, International Journal of Chemical Engineering, and Adsorption Science & Technology. His Q1–Q2 publications reflect significant advancements in areas including nanofluid stability, enhanced heat transfer, eco-friendly fuel blends with  , and nano-reinforced composite materials. His interdisciplinary works extend to solar water heating systems, cryogenic vessel design, adsorption-based separation technologies, and nanoparticle-assisted wastewater treatment. Several of his highly cited studies focus on waste-to-energy conversion, algae-oil biodiesel applications, and green-synthesized nanoparticles for environmental remediation, highlighting his contribution to sustainable and cleaner energy technologies. In addition to his research output, Dr. Teja serves as a reviewer for numerous national and international journals and holds editorial memberships, contributing to global scholarly communication and knowledge dissemination. His consistent research engagement, innovation-driven approach, and interdisciplinary collaborations underscore his impactful role in advancing thermal sciences, materials engineering, and renewable energy research.

Profiles: Scopus | Google Scholar | ORCID | Staff Profile

Featured Publications

  1. Sathish, T., Vijayalakshmi, A., Surakasi, R., Ahalya, N., Rajkumar, M., … (2024). DeepNNet 15 for the prediction of biological waste to energy conversion and nutrient level detection in treated sewage water. Process Safety and Environmental Protection, 189, 636–647.

  2. Senthil, T. S., Puviyarasan, M., Babu, S. R., Surakasi, R., & Sampath, B. (2023). Industrial robot-integrated fused deposition modelling for the 3D printing process. In Development, Properties, and Industrial Applications of 3D Printed Polymer Materials

  3. Lakshmaiya, N., Surakasi, R., Nadh, V. S., Srinivas, C., Kaliappan, S., … (2023). Tanning wastewater sterilization in the dark and sunlight using Psidium guajava leaf-derived copper oxide nanoparticles and their characteristics. ACS Omega, 8(42), 39680–39689.

  4. Nirmal Kumar, K., Dinesh Babu, P., Surakasi, R., Kumar, P. M., & Ashokkumar, P. (2022). Mechanical and thermal properties of bamboo fiber–reinforced PLA polymer composites: A critical study. International Journal of Polymer Science, 2022(1), 1332157.

  5. Vennila, T., Karuna, M. S., Srivastava, B. K., Venugopal, J., & Surakasi, R. (2023). New strategies in treatment and enzymatic processes: Ethanol production from sugarcane bagasse. In Human Agro-Energy Optimization for Business and Industry (pp. 219–240).

Bojiang Yin | Engineering | Best Researcher Award

Mr. Bojiang Yin | Engineering | Best Researcher Award

School of Petrochemical Engineering, Lanzhou University of Technology | China

Mr. Bojiang Yin’s research primarily focuses on the fundamental and applied aspects of special valve design and process systems, with an emphasis on structural parameter optimization, reliability engineering, and multi-physics coupling dynamics. His work addresses critical challenges in extreme operating environments, such as ultra-low temperature liquid hydrogen systems, by developing innovative sealing structures and evaluating their performance using advanced computational approaches. He has employed techniques including thermo-mechanical coupling, sensitivity analysis, high-precision RBF surrogate modeling, and NSGA-II optimization to achieve reliable bidirectional sealing under cryogenic conditions. Bojiang has published in high-impact journals like Scientific Reports, contributing to the scientific understanding of valve mechanics and optimization methodologies. He has collaborated with the National Natural Science Foundation of China, the Double First-Class Key Program of Gansu Province, and other regional technology programs, bridging academic research with practical industry applications. His contributions extend to consultancy projects, product development, and providing references for the design of advanced butterfly valves, positioning him as an emerging researcher in valve innovation and cryogenic system reliability.

Profile: ORCID

Featured Publications

Li, S., Yin, B., Wei, C., Li, W., & Yang, L. (2025). Structural analysis and multi-objective optimization of sealing structure for cryogenic liquid hydrogen triple-offset butterfly valve. Scientific Reports, 15, Article 20095. https://doi.org/10.1038/s41598-025-20095-6