Assoc. Prof. Dr. Mahmoud Abd-Ellah | Computer Science | Best Researcher Award
Egyptian Russian University | Egypt
Dr. Mahmoud Khaled Abd-Ellah is an accomplished Assistant Professor at the Faculty of Artificial Intelligence, Egyptian Russian University, Badr, Egypt, widely recognized for his pioneering research at the intersection of artificial intelligence, medical imaging, and deep learning. Holding a Ph.D. in Electrical Engineering from Minia University, his doctoral research focused on brain tumor diagnosis through MRI using advanced machine learning techniques. His impressive publication portfolio includes 22 Scopus-indexed papers, collectively cited 830 times by 774 documents, with an h-index of 12 demonstrating substantial scientific impact and research excellence. His scholarly work has been featured in leading journals such as Scientific Reports, Neural Computing and Applications, and Ecological Informatics, advancing AI-driven approaches for medical image analysis, automated brain tumor detection, COVID-19 classification, and environmental data modeling. Beyond research, Dr. Abd-Ellah actively contributes to academic governance and quality enhancement as a member of the Egyptian International Ranking Committee, head of the Quality Management Unit, and ranking official at the Egyptian Russian University. He is also an active member of multiple IEEE councils, engaging in the development and application of AI across engineering and biomedical domains. His ORCID profile (0000-0002-6840-2503) and Scopus ID (57191265348) further reflect his consistent record of impactful scholarship and international collaboration. With his interdisciplinary expertise, editorial service, and mentorship of Ph.D. and master’s students, Dr. Mahmoud Khaled Abd-Ellah exemplifies academic leadership, innovation, and a transformative approach to research that advances both science and society.
Profile: Scopus | Google Scholar | ORCID | ResearchGate
Featured Publications
-
Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318.
-
Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2018). Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks. EURASIP Journal on Image and Video Processing, 2018(1), 1–10.
-
El-Rawy, M., Abd-Ellah, M. K., Fathi, H., & Ahmed, A. K. A. (2021). Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques. Journal of Water Process Engineering, 44, 102380.
-
Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2016). Design and implementation of a computer-aided diagnosis system for brain tumor classification. In 2016 28th International Conference on Microelectronics (ICM) (pp. 73–76).
-
MostafaShokry, A. A. M. K., Awad, A. I., & Abd-Ellah, M. K. (2022). Systematic survey of advanced metering infrastructure security: Vulnerabilities, attacks, countermeasures, and future vision. Future Generation Computer Systems, 1–21.
