Sang-Eun Oh | Environmental Science | Best Researcher Award

Prof. Dr. Sang-Eun Oh | Environmental Science | Best Researcher Award

Kangwon National University | South Korea

Prof. Dr. Sang-Eun Oh is a leading environmental engineer and biotechnologist at the Department of Biological Environment, Kangwon National University, South Korea, where he serves as Professor and Director of the Environmental Research Center. He earned his Ph.D. in Environmental Science and Engineering from Gwang-Ju Institute of Science and Technology (GIST) in 2002, following M.S. and B.S. degrees in Environmental Engineering from Chung-Nam National University. Dr. Sang-Eun Oh gained international research experience as a Postdoctoral Research Associate at The Pennsylvania State University, USA, before joining Kangwon National University in 2006. His research focuses on microbial fuel cells, bioenergy production, wastewater treatment, eco-toxicological monitoring using sulfur-oxidizing microorganisms, and sustainable environmental biotechnology. Over his career, he has led more than 27 completed and three ongoing national and international projects, including pioneering work in microbial electrochemical systems, livestock waste treatment, and hydroponic cultivation technologies. Dr. Sang-Eun Oh has authored 182 peer-reviewed publications in high-impact journals such as Biodegradation, Journal of Hazardous Materials, Chemosphere, and Sustainability, and holds 26 patents for innovative environmental technologies. He has collaborated with global leaders including Bruce E. Logan’s laboratory at Penn State University, advancing bioenergy generation, green hydrogen production, and microbial bio electrochemical systems. His outstanding contributions have earned him prestigious awards including the Minister of Environment Award, Best Environmental Technology Award, and multiple Best Paper Awards. Recognized for his scientific rigor, innovation, and leadership in clean technology and sustainable environmental solutions, Dr. Sang-Eun Oh exemplifies excellence and is a highly deserving candidate for the Best Researcher Award.

Profile: Google Scholar

Featured Publications

  1. Min, B., Kim, J. R., Oh, S. E., Regan, J. M., & Logan, B. E. (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39(20), 4961–4968.

  2. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S. E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756.

  3. Oh, S. E., Min, B., & Logan, B. E. (2004). Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology, 38(18), 4900–4904.

  4. Kim, J. R., Cheng, S., Oh, S. E., & Logan, B. E. (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology, 41(3), 1004–1009.

  5. Oh, S. E., & Logan, B. E. (2005). Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research, 39(19), 4673–4682.

  6. Logan, B. E., Oh, S. E., Kim, I. S., & Van Ginkel, S. (2002). Biological hydrogen production measured in batch anaerobic respirometers. Environmental Science & Technology, 36(11), 2530–2535.

  7. Oh, S. E., & Logan, B. E. (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology, 70(2), 162–169.

  8. Oh, S. E., Van Ginkel, S., & Logan, B. E. (2003). The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environmental Science & Technology, 37(22), 5186–5190.

Mustafa Korkmaz | Environmental Science | Best Researcher Award

Dr. Mustafa Korkmaz | Environmental Science | Best Researcher Award

Balıkesir University | Turkey

Dr. Mustafa Korkmaz is a dedicated scholar in the field of environmental engineering, well recognized for his specialized work on wastewater treatment and boron pollution management. His academic and research career has been strongly linked to the development of innovative technologies for the removal of contaminants from various industrial effluents. Through a combination of experimental research, applied engineering solutions, and theoretical modeling, he has consistently advanced new methods that can be adapted to industrial and municipal wastewater systems. His scientific focus integrates adsorption, ion exchange, electrochemical treatments, and phytoremediation, which together make his contributions both comprehensive and impactful. His published works and completed projects have not only enriched academic knowledge but also provided practical solutions for industries dealing with critical water pollution challenges.

Professional Profile

ORCID

Education

Dr. Mustafa Korkmaz pursued his academic training in environmental engineering at Balikesir University, where his passion for water resource management and pollution control was nurtured. His master’s thesis focused on boron removal from aqueous media, a subject that became central to his later career and research identity. During his studies, he developed strong expertise in chemical, biological, and physical treatment technologies, particularly in understanding adsorption and ion exchange processes. His academic formation emphasized the importance of linking theoretical models with applied engineering practices, equipping him with both analytical and technical skills that continue to underpin his career as a researcher and innovator.

Experience

With extensive research and project experience, Dr. Mustafa Korkmaz has worked on multiple environmental engineering projects funded by Balikesir University’s scientific research unit. His contributions include pioneering studies on boron removal, optimization of dye and heavy metal removal from industrial wastewater, and the use of natural and modified minerals in adsorption systems. He has played critical roles in projects investigating the efficiency of zeolites, talc clays, pumice, and ion exchange resins in removing contaminants. Additionally, he has contributed to innovative studies on electrocoagulation, electrooxidation, and phytoremediation using plants for soil detoxification. His expertise extends to experimental design, reactor modeling, and statistical optimization, which he applies to real-world water and wastewater problems.

Research Interests

Dr. Mustafa Korkmaz’s research interests reflect the interdisciplinary nature of environmental science. His work spans adsorption and biosorption studies, ion exchange technology, chemical coagulation-precipitation, and surface chemistry in water treatment. He is also interested in assessing the meteorological impacts on air pollution and developing phytoremediation techniques for boron-contaminated soils. Another key aspect of his work involves the optimization of oxygen transfer in jet-loop bioreactors, as well as studying the kinetics of batch and column reactors. He frequently applies advanced statistical and mathematical modeling to environmental challenges, using design of experiments to optimize treatment processes. His research focuses on pollutants from boron, textile, poultry, and heavy-metal industries, with additional emphasis on electrochemical processes like electrocoagulation, electrooxidation, and electro-Fenton treatments.

Awards

Dr. Mustafa Korkmaz is being nominated for recognition of his sustained contributions to environmental engineering and wastewater treatment. His research career demonstrates an exceptional balance between scientific discovery and practical application, with a focus on solving pressing environmental problems. The nomination acknowledges his pioneering studies in boron removal, his strong record of publications in reputable international journals, and his leadership in collaborative research projects. This distinction highlights his dedication to advancing environmental sustainability through innovative engineering solutions.

Publications

Dr. Mustafa Korkmaz has authored numerous publications in international journals indexed in SCI, Scopus, and other scholarly platforms. His research reflects deep expertise in adsorption, ion exchange, and boron removal technologies. A selection of his works includes:

  • Title: An Empirical Kinetic Model for Calcium Removal from Calcium Impurity Containing Saturated Boric Acid Solution by Ion Exchange Technology Using Amberlite IR–120 Resin
    Journal: Chemical Engineering Journal
    Published on: 2009

  • Title: Cationic Dye (Methylene Blue) Removal from Aqueous Solution by Montmorillonite
    Journal: Bulletin Korean Chemical Society
    Published on: 2012

  • Title: Methyl Violet Dye Adsorption onto Clinoptilolite (Natural Zeolite): Isotherm and Kinetic Study
    Journal: Fresenious Environmental Bulletin
    Published on: 2013

  • Title: Characterization and Electrokinetic Properties of Montmorillonite
    Journal: Bulgarian Chemical Communications
    Published on: 2014

  • Title: Full Factorial Design of Experiments for Boron Removal From Colemanite Mine Wastewater Using Purolite S 108 Resin
    Journal: Bulgarian Chemical Communications
    Published on: 2014

  • Title: An Empirical Model for Thermodynamics of Copper (II) Adsorption from Solutions onto Illite Clay―Batch Process Design
    Journal: The Chilean Journal of Chemical Society
    Published on: 2014

  • Title: Determination of Parameters Affecting Copper Removal from Solutions by Clinoptilolite: Adsorption Isotherm and Thermodynamic
    Journal: Iğdır Univ. J. Inst. Sci. & Tech
    Published on: 2012

  • Title: Application of Nonlinear Regression Analysis for Methyl Violet (MV) Dye Adsorption from Solutions onto Illite Clay
    Journal: Dispersion Science and Technology
    Published on: 2016

Conclusion

Dr. Mustafa Korkmaz has established himself as a highly productive researcher with a strong commitment to solving environmental challenges through scientific innovation. His focused studies on boron removal, adsorption processes, and electrochemical treatment methods have not only expanded academic knowledge but also offered practical pathways for industries to adopt more sustainable practices. His balanced approach of combining experimental research with statistical and mathematical modeling has resulted in valuable contributions to wastewater treatment technologies. With a proven record of impactful publications, successful projects, and innovative methodologies, Dr. Korkmaz is an excellent candidate for the Best Researcher Award, representing both academic excellence and societal relevance in environmental engineering.

Masoumeh Bararzadeh Ledari | Environmental Science | Best Researcher Award

Dr. Masoumeh Bararzadeh Ledari | Environmental Science | Best Researcher Award

Amirkabir University of Technology | Iran

Dr. Masoumeh Bararzadeh Ledari is a distinguished academic and sustainability researcher serving as a Lecturer at Amir Kabir University of Technology. She is widely recognized for her pioneering work in energy systems, sustainable development, and integrated climate-resource modeling. With an extensive background bridging academia, international research institutions, and industry, she has successfully combined theoretical frameworks with practical applications to design innovative solutions for global challenges in energy transition and environmental sustainability. Her reputation as a thought leader is evident in her ability to link resource management, industrial optimization, and climate change resilience in a holistic way.

Professional Profile

Scopus

Google Scholar

ORCID

Education

Dr. Masoumeh Bararzadeh Ledari has an impressive academic journey, beginning with her undergraduate degree in Chemical Engineering from Tehran University, where she focused on experimental modeling of advanced gasification systems. She pursued her Master’s degree in Energy Engineering at Sharif University of Technology, with research dedicated to improving refinery efficiency and reducing environmental impacts through innovative safety and process integration methods. Her doctoral work at the same institution advanced the field of sustainable resource management through hybrid evaluation models designed to minimize ecological costs of energy and material flows. Throughout her education, she consistently aligned her studies with the goal of addressing pressing issues in climate change and energy systems, which shaped the foundation for her current research.

Experience

Dr. Masoumeh Bararzadeh Ledari has built a strong career through a combination of academic appointments, international research fellowships, and technical consultancy leadership. As a Lecturer and Adjunct Professor, she has taught advanced courses in renewable energy technologies, waste management, building life cycle design, and exergy analysis at top universities in Iran. Her academic career is complemented by international research experience at renowned institutions such as the International Institute for Applied Systems Analysis in Austria and the Research Centre for Energy Resources and Consumption in Spain, where she contributed to nexus-based modeling and thermodynamic system analysis. Beyond academia, she has served as Technical Manager and Scientific Director in several national and international projects, leading consultancy in petrochemical, steel, and energy industries. Her leadership in projects involving hydrogen transition pathways, carbon capture and storage, integrated resource management, and climate policy frameworks demonstrates her unique ability to translate research into transformative practice.

Research Interests

Dr. Masoumeh Bararzadeh Ledari’s research portfolio reflects her interdisciplinary vision for sustainability. Her main focus lies in the water-food-energy-climate-land nexus, where she has developed advanced models to address complex interdependencies of resources. She is deeply engaged in circular economy approaches, regenerative life modeling, exergy-based ecosystem simulation, and life cycle assessment, with the objective of reducing the environmental footprint of industrial systems. Another core area of her work addresses low-carbon transitions in industries such as steel, petrochemicals, and hydrogen production, where she integrates climate strategies with technological innovation. Her research is globally relevant, as it provides both scientific and policy insights into mitigating climate change while ensuring long-term socio-economic resilience.

Awards

Dr. Masoumeh Bararzadeh Ledari’s contributions have earned her recognition as an emerging leader in sustainability research. She has been entrusted with key consultancy roles for organizations such as the Food and Agriculture Organization (FAO) and the United Nations Development Programme (UNDP), where her expertise shaped frameworks for climate change adaptation, stakeholder engagement, and natural resource management. She has also played a central role in developing strategies for carbon capture and storage at the Presidential Center for Progress and Development in Iran, marking a milestone in national climate policy. Her selection as a lead researcher in collaborative international projects and her leadership in critical industry-focused sustainability initiatives highlight her standing as a scholar whose work has both academic and practical impact.

Publications

Dr. Masoumeh Bararzadeh Ledari has authored influential articles that have appeared in high-impact journals and are widely cited by other scholars. Her works include:

Title: Digitalised circular construction supply chain: An integrated BIM-Blockchain solution
Journal: Automation in Construction
Published on: 2023
Citation: 137

Title: Greening steel industry by hydrogen: Lessons learned for the developing world
Journal: International Journal of Hydrogen Energy
Published on: 2023
Citation: 92

Title: Multi objective planning for sustainable retrofit of educational buildings
Journal: Journal of Building Engineering
Published on: 2019
Citation: 49

Title: Building circularity as a measure of sustainability in the old and modern architecture: A case study of architecture development in the hot and dry climate
Journal: Energy and Buildings
Published on: 2022
Citation: 42

Title: Sustainable hydrogen supply chain development for low-carbon transportation in a fossil-based port region: A case study in a tourism hub
Journal: International Journal of Hydrogen Energy
Published on: 2024
Citation: 28

Title: Water-food-energy-ecosystem nexus model development: Resource scarcity and regional development
Journal: Energy Nexus
Published on: 2023
Citation: 17

Title: Exergy analysis of high-performance cycles for gas turbine with air-bottoming
Journal: Mechanical Engineering Research
Published on: 2012
Citation: 17

Conclusion

Dr. Masoumeh Bararzadeh Ledari exemplifies the qualities of a world-class researcher, combining academic excellence, technical expertise, and global engagement. Her sustained commitment to advancing sustainable energy systems and integrated climate-resource models has produced measurable impacts on both scholarship and industry. By uniting scientific innovation with policy and industrial implementation, she represents the new generation of researchers driving the transition to a more sustainable and resilient future. Her body of work makes her an outstanding candidate for the Best Researcher Award.

Chuanxing Jia | Environmental Science | Best Researcher Award

Assoc. Prof. Dr. Chuanxing Jia | Environmental Science | Best Researcher Award

Ecology and Environment | Qufu Normal University | China

📘 Dr. Chuanxing Jia, an associate professor at the School of Life Sciences, Qufu Normal University, specializes in environmental science and engineering. With a focus on ecological sustainability and hazardous waste management, Dr. Jia combines academic rigor and innovative research to address critical environmental challenges.

Profile

Scopus

Strengths for the Awards

  • Academic Background and Expertise:
    • Dr. Jia has a robust educational foundation in environmental science and engineering, with a Ph.D. from Chongqing University.
    • His expertise spans environmental pollution management, hazardous waste handling, and anaerobic digestion technologies.
  • Research Contributions:
    • Published multiple peer-reviewed papers in respected journals like Journal of Basic Microbiology and Bulletin of Environmental Contamination and Toxicology.
    • Significant contributions as a co-corresponding author and sole corresponding author, showcasing leadership in collaborative research.
  • Funded Research Projects:
    • Successfully secured and led competitive research grants at national and provincial levels.
    • Projects like “Prewarning and Control Technology for Anaerobic Digestion of Organic Solid Waste” emphasize innovation and practical applications in environmental management.

Education

🎓 Doctorate: Environmental Science and Engineering, Chongqing University (2007-2010)
🎓 Master’s Degree: Environmental Engineering, Chongqing University (2004-2007)
🎓 Bachelor’s Degree: Environmental Engineering, Chongqing University (2000-2004)

Dr. Jia’s educational journey has been rooted in Chongqing University, where he built a strong foundation in environmental science and engineering.

Experience

💼 Associate Professor: Qufu Normal University, School of Life Sciences (2015–Present)
💼 Deputy Senior Role: Jining Environmental Protection Bureau, Hazardous Waste and Environmental Emergency Management Center (2011–2015)

Dr. Jia’s diverse professional experience spans academia and governmental roles, focusing on environmental protection and sustainable waste management systems.

Research Interests On 🔬Environmental Science

Dr. Jia’s research centers on:

  • Hazardous waste management using intelligent systems.
  • Microbial resistance mechanisms in anaerobic digestion.
  • Advanced techniques for solid waste recycling and treatment.
  • Ecological restoration and environmental monitoring.

Awards and Recognitions 🏆

Dr. Jia has been recognized for his contributions to environmental science, including:

  1. Inventor of patents on hazardous waste management and anaerobic digestion technologies.
  2. Contributor to key ecological studies for the South-to-North Water Transfer Project.
  3. Key member of high-profile environmental management initiatives, particularly for the Nansi Lake region.

Publications

1. Comparative Analysis of the Biochar Derived from Antibiotic Fermentation Residue and Corn Straw and its Role in Promoting Anaerobic Digestion

  • Authors: Jia, C., Zhao, H., Wang, N., Gao, P., Wang, R.
  • Publication Year: 2025
  • Citations: 0

2. Novel photic responsive Janus nanoparticles: Interfacial catalysts for efficient preparation of biodiesel

  • Authors: Li, M., Zhang, R., Jia, C., Liu, Y., Ying, A.
  • Publication Year: 2024
  • Citations: 2

3. Characterization of medaka (Oryzias latipes) AHRs and the comparison of two model fishes—Medaka vs. zebrafish: The subform-specific sensitivity to dioxin

  • Authors: Zhang, W., Xue, Z., Cao, Q., Ding, N., Wang, R.
  • Publication Year: 2024
  • Citations: 0

4. Coal-mining subsidence changed distribution of the microbiomes and their functional genes in a farmland

  • Authors: Gao, P., Fan, K., Zhang, G., Jia, C., Tian, H.
  • Publication Year: 2023
  • Citations: 3

5. Impact of Biochars on the Iron Plaque Formation and the Antimony Accumulation in Rice Seedlings

  • Authors: Zhang, Z., Jia, C., Gan, Y., Wang, S.
  • Publication Year: 2022
  • Citations: 5

6. Bacterial and Archaeal Community Distribution in Oilfield Water Re-injection Facilities and the Influences from Microorganisms in Injected Water

  • Authors: Gao, P., Li, Y., Tian, H., Jia, C., Ma, T.
  • Publication Year: 2022
  • Citations: 7

7. Chemical Forms and Spatial Distribution of Phosphorus in the Sediment of Sihe River

  • Authors: Zhang, Z.-H., Zhang, X.-R., Jia, C.-X., Gan, Y.-D., Wang, S.-L.
  • Publication Year: 2022
  • Citations: 2

8. Bacterial community shift in response to a deep municipal tail wastewater treatment system

  • Authors: Chen, J., Yang, Y., Liu, Y., Jiang, J., Jia, C.
  • Publication Year: 2019
  • Citations: 55

9. Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell

  • Authors: Chen, J., Yang, Y., Liu, Y., Tian, Y., Jia, C.
  • Publication Year: 2019
  • Citations: 95

Conclusion

🌟 Dr. Chuanxing Jia is a dedicated scholar and innovator in environmental science, contributing significantly to hazardous waste management, microbial research, and ecological sustainability. His work bridges academia and practical applications, fostering environmental stewardship for future generations.