Dr. Mehnaz Tabassum | Computer Science and Artificial Intelligence | Women Researcher Award
University of Sydney | Australia
Dr. Mehnaz Tabassum is an accomplished researcher in Computational Neurosurgery and Health Innovation, with core expertise in medical image analysis, artificial intelligence, and brain tumor diagnostics. Her research integrates deep learning, radiomics, and neuroimaging to enhance the precision of tumor segmentation, classification, and recurrence prediction in neuro-oncology. Her scholarly contributions include 14 Scopus-indexed publications, with a total of 87 citations and an h-index of 4 (Scopus metrics). She has published in prestigious journals such as Cancers, European Radiology, and Neuro-Oncology Advances, and has presented her findings at leading international conferences including IEEE EMBC and IEEE ISBI. Dr. Mehnaz Tabassum’s recent research explores cross-modality medical image synthesis, MRI-to-PET generation using diffusion and GAN-based models, and meta transfer learning for brain tumor segmentation. Her innovative work advances computational solutions for precision medicine and AI-assisted neuroimaging. She has received multiple distinctions, including the Pro-Vice Chancellor’s Research Excellence Scholarship and the Henry Sutton Postgraduate Research Scholarship, alongside a Best Paper Award for excellence in scientific contribution. Her interdisciplinary research continues to impact the fields of AI-driven diagnostics, eye-tracking in medical imaging, and computational modeling for neurosurgical innovation, reflecting her commitment to advancing data-driven healthcare and translational neuroscience.
Profiles: Scopus | Google Scholar | ORCID | ResearchGate | Staff Page
Featured Publications
-
Tabassum, M., Suman, A. A., Suero Molina, E., Pan, E., Di Ieva, A., & Liu, S. (2023). Radiomics and machine learning in brain tumors and their habitat: A systematic review. Cancers, 15(8), Article 2034. https://doi.org/10.3390/cancers15082034
-
Ghose, P., Alavi, M., Tabassum, M., Ashraf Uddin, M., Biswas, M., Mahbub, K., … & Hassan, M. (2022). Detecting COVID-19 infection status from chest X-ray and CT scan via single transfer learning-driven approach. Frontiers in Genetics, 13, 980338. https://doi.org/10.3389/fgene.2022.980338
-
Moradizeyveh, S., Tabassum, M., Liu, S., Newport, R. A., Beheshti, A., & Di Ieva, A. (2024). When eye-tracking meets machine learning: A systematic review on applications in medical image analysis. arXiv preprint arXiv:2403.07834. https://arxiv.org/abs/2403.07834
-
Tabassum, M., Suman, A. A., Russo, C., Di Ieva, A., & Liu, S. (2023). A deep learning framework for skull stripping in brain MRI. Neurocomputing (Under review).
-
Afrin, F., Al-Amin, M., & Tabassum, M. (2015). Comparative performance of using PCA with K-means and fuzzy C means clustering for customer segmentation. International Journal of Scientific and Technology Research, 4(8), 70–74.
