Zhanyong Hong | Nanoenergy and Nanosystems | Best Researcher Award

Prof. Zhanyong Hong | Nanoenergy and Nanosystems | Best Researcher Award

Beijing Institute of Nanoenergy and Nanosystems | China

Prof. Zhanyong Hong is a distinguished professor at the Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, and the Director of the Blue Energy Engineering Center. Renowned for his pioneering work in marine energy harvesting technologies, Prof. Hong has built a remarkable career spanning fundamental studies to large-scale industrial applications. With expertise in triboelectric nanogenerators and energy storage systems, he plays a key role in shaping the future of self-powered systems and marine Internet of Things (IoT) platforms.

Professional profile👤

Scopus

Strengths for the Awards✨

Prof. Zhanyong Hong demonstrates exceptional qualifications for the Best Researcher Award. As a professor at the Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, and director of the Blue Energy Engineering Center, he plays a pivotal role in advancing blue energy technologies. His expertise in wave-energy triboelectric nanogenerators, self-powered marine IoT systems, and offshore energy solutions reflects a multidisciplinary and high-impact research profile.

He has authored over 40 high-quality publications in top-tier journals such as Advanced Energy Materials, Nano Energy, and Advanced Functional Materials. Furthermore, his prolific patent portfolio—50+ granted patents, PCT filings, and software copyrights—demonstrates a strong commitment to innovation and technology transfer. His leadership in major national and industrial projects, combined with recognition such as the First Prize for Scientific and Technological Progress of Hefei City, highlights both his academic excellence and real-world impact.

🎓 Education

Prof. Zhanyong Hong holds a robust academic foundation in physics and nanotechnology, which underpins his innovative research work. While specific degree information isn’t listed in the provided content, his achievements and professional stature indicate extensive higher education and specialization in energy systems and materials science, likely including a Ph.D. from a top-tier institution in China.

💼 Experience

Prof. Hong currently serves as a full professor at the Beijing Institute of Nanoenergy and Nanosystems under the Chinese Academy of Sciences. He also leads the Blue Energy Engineering Center. With a deep understanding of renewable energy technologies, he has been instrumental in both the theoretical modeling and practical engineering of triboelectric nanogenerators. His professional journey bridges academia and industry, with significant involvement in major national and regional R&D initiatives.

🔬 Research Interests On Nanoenergy and Nanosystems

Prof. Hong’s research interests are firmly rooted in sustainable marine energy solutions. His core focus areas include the structural and performance optimization of wave-energy triboelectric nanogenerators (TENGs), energy storage and management systems, the design of self-powered marine IoT platforms, and composite offshore energy systems. His work aims to revolutionize energy access for marine applications through high-efficiency, low-carbon technologies.

🏆 Awards

Prof. Hong is the recipient of the First Prize for Scientific and Technological Progress of Hefei City (Anhui Province)—a prestigious honor reflecting the impact of his contributions to energy science. He has also successfully led or participated in numerous major science and technology projects at the national, provincial, and municipal levels, supporting both academic progress and industrial deployment of advanced energy technologies.

📚 Publications

Prof. Hong has authored over 40 high-impact research papers in internationally recognized journals. His work has appeared in Small, Advanced Functional Materials, Advanced Energy Materials, Nano Energy, Device, and Journal of Electronic Measurement and Instrumentation.
Some notable publications include:

📄 Conclusion

Prof. Zhanyong Hong stands at the forefront of marine energy innovation, seamlessly integrating advanced nanogenerator technologies with real-world marine IoT applications. With a prolific publication record, dozens of patents, and multiple national-level research contributions, he exemplifies the qualities of a visionary researcher and industrial leader. His work not only advances scientific understanding but also accelerates the sustainable transformation of offshore energy systems, making him a deserving candidate for prestigious research and innovation awards.

Pratiksha Agnihotri | Nanotechnology | Best Paper Award

Dr. Pratiksha Agnihotri | Nanotechnology | Best Paper Award

Dr. Pratiksha Agnihotri is a dedicated physicist specializing in materials science, currently serving as a Project Officer at the Centre for Programmable Photonic Integrated Circuits and Systems (CPPICS) at IIT Madras, under the Ministry of Electronics and Information Technology (MeitY), Government of India. With a Ph.D. in Physics, she has authored 14 peer-reviewed international journal articles, focusing on high dielectric materials for energy storage devices. Her commitment to advancing energy storage technologies is evident in her innovative research and active engagement in academic mentorship and science outreach.

Professional profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  1. Substantive Research Output:
    With 14 peer-reviewed publications, many in high-impact journals like Ceramics International, Emergent Materials, and Ionics, Pratiksha has demonstrated consistent and relevant contributions in the field of high dielectric materials and energy storage.

  2. Innovative Research Focus:
    Her work on KNN-based metal oxide composite thin films and Mo²⁺ substituted hexaferrites addresses cutting-edge materials for energy storage applications, a critical domain in sustainability and electronics.

  3. First-Author Contributions:
    She is the first author on the majority of her published papers, indicating lead contributions in design, execution, and manuscript preparation — a key criterion for Best Paper Awards.

  4. Interdisciplinary Impact:
    Her integration of impedance spectroscopy, dielectric analysis, and material synthesis techniques bridges physics, materials science, and electronics engineering, increasing the applicability and reach of her research.

  5. Recognition through Patents:
    Filing four patents demonstrates the originality and application-oriented nature of her work, adding a commercial and innovation dimension to her academic achievements.

  6. Institutional Affiliation:
    Currently affiliated with IIT Madras under the Ministry of Electronics and Information Technology (MeitY) — a national-level Centre of Excellence — provides credibility and underscores the national relevance of her work.

🎓 Education

Dr. Agnihotri’s academic journey reflects her deep commitment to physics and materials science. She earned her Ph.D. in Material Science from Shoolini University, Himachal Pradesh, India, in December 2025, achieving a CGPA of 8.2. Her doctoral research, titled “Optimization of Theoretical & Experimental Approach of KNN – Based Metal Oxide Composite Thin Film for High Dielectric Material,” encompassed advanced material characterization, solid-state physics, and dielectric properties. Prior to this, she completed her Master of Science in Physics from Shoolini University in June 2021 with a CGPA of 7.8, and her Bachelor of Science in Physics from Himachal Pradesh University in June 2019 with a CGPA of 6.78.

💼 Experience

Dr. Agnihotri brings a wealth of experience in both research and academia. Since December 17, 2024, she has been contributing to CPPICS at IIT Madras, where she creates and delivers project presentations, updates stakeholders on milestones, and fosters strong project relationships. In January 2023, she served as a teaching assistant at Shoolini University, providing homework assistance, motivating students, and collaborating to enhance learning outcomes. Her roles demonstrate her ability to bridge complex research with effective communication and mentorship.

🔬 Research Interests On Nanotechnology

Dr. Agnihotri’s research is centered on the synthesis and characterization of advanced materials for energy applications. Her interests include:

  • Oxide, Carbonate, and Ferrite materials

  • Synthesis of nanomaterials

  • Energy storage devices

  • Solar cells

  • Thermistor applications

  • Flexible electronic devices

She is proficient in various analytical techniques such as XRD, FESEM, Raman Spectroscopy, FTIR, Dielectric Spectroscopy, Modulus, Impedance, and AC Conductivity measurements. Her expertise extends to software tools like Origin, FullProf, VESTA, and ImageJ, which she utilizes for data analysis and visualization.

🏆 Awards & Patents

Dr. Agnihotri’s innovative work has led to the filing of several patents, including:

  • Mo²⁺ substituted Ba₀.₇Gd₀.₃MoxF₁₂₋ₓO₁₉ M-type hexaferrite-based nanomaterial and its preparation process.

  • Rietveld analysis and negative dielectric behavior of perovskite-like La₁₋ₓEuxMnO₃ ceramic system.

  • Pr³⁺/Mn²⁺ doped (Bi₀.₉₅Pr₀.₀₅)(Fe₀.₉₅Mn₀.₀₅)O₃ perovskite ceramic-based nanomaterial.

  • Gd-doped (BiFeO₃–BaTiO₃) multiferroic perovskite-based nanomaterial.

  • Dy³⁺/Mn²⁺ doped (Bi₀.₉₅Dy₀.₀₅)(Fe₀.₉₅Mn₀.₀₅)O₃ perovskite ceramic-based nanomaterial.

  • LiNbO₃ composite-based perovskite system substituted on KNN ceramic nanomaterial.

These patents underscore her contributions to the development of novel materials with potential applications in energy storage and electronic devices.

📚 Publications

Dr. Agnihotri has an impressive portfolio of publications. Here are some of her notable works:

Title: Exploring the structural and electrical trends in Mo²⁺ substituted Ba₀.₇Gd₀.₃MoxF₁₂₋ₓO₁₉ Hexaferrite
Authors: P Agnihotri, A Kumar, SS Parida, S Kumari, B Singh, R Hawaldar, R Rai
Year: 2024
Citations: 6

Title: Relaxation behaviour, conductive grains and resistive boundaries of bismuth-based double perovskite Bi₂₋ₓLaₓFeGaO₆
Authors: JP Nayak, P Agnihotri, S Kumari, P Kumari, P Kumar, R Rai
Year: 2024
Citations: 5

Title: Study the structural, electrical and ferroelectric behaviour of lead-free sodium potassium niobate (KNN) ceramics in view of energy storage capacity
Authors: P Agnihotri, R Hawaldar, R Rai
Year: 2024
Citations: 5

Title: Exploring the structural characteristics and electrical conductivity of MnTiO₃ across ferroelectric and paraelectric phases
Authors: P Agnihotri, R Hawaldar, M Singh, R Rai
Year: 2024
Citations: 5

Title: Investigation of structural and electrical properties of 0.90PbMn₁/₃Nb₂/₃O₃–0.10PbTiO₃ ceramics prepared via solid-state reaction
Authors: P Agnihotri, S Kumari, P Negi, P Kumar, P Kumari, R Hawaldar, R Rai
Year: 2024
Citations: 5

Title: Structural and dielectric characterization of BiLaCoGaO₆ double perovskite ceramic using x-ray diffraction and impedance spectroscopy
Authors: P Agnihotri, JP Nayak, P Kumar, R Rai
Year: 2024
Citations: 4

Title: Exploring impedance and modulus response of cobalt titanate in ferroelectric phase
Authors: NP Yadav, P Agnihotri, R Rai
Year: 2025
Citations: 3

Title: A comprehensive review of bismuth, lanthanum and strontium based double perovskites− Unravelling structural, magnetic, and dielectric properties
Authors: J Parsadnayak, R Jasrotia, A Kumarsharma, A Kandwal, P Agnihotri, …
Year: 2024
Citations: 3

Title: Synergistic effect of self-poled fibre based flexible lead-free KNN/P(VDF-HFP) nanofiber mat for scavenging piezoelectric energy
Authors: MSSK Gun Anit Kaur, Pratiksha
Year: 2022
Citations: 3

Title: Investigation of dielectric transitions and impedance behavior in solid solutions of (1–x) K₀.₄₁Na₀.₅₉Nb₀.₉₅₉Sb₀.₀₄₁O₃–x (Bi₀.₅K₀.₅TiO₃)
Authors: R Rai, P Agnihotri, S Kumari, M Dutta
Year: 2024
Citations: 2

Title: A spectroscopic ellipsometry study of TiO₂:ZrO₂ on TiN/Si thin films prepared by Chemical Beam Vapor Deposition
Authors: P Agnihotri, A Verma, A Saini, R Rani, W Maudez, E Wagner, G Benvenuti, …
Year: 2024
Citations: 2

✅ Conclusion

Dr. Pratiksha Agnihotri exemplifies the integration of rigorous scientific research with practical applications in energy storage and materials science. Her extensive academic background, combined with her hands-on experience in research and teaching, positions her as a valuable contributor to the scientific community. Her work not only advances the field of high dielectric materials but also inspires future innovations in sustainable energy solutions.