Flora Hajiyeva | Nanotechnology | Best Researcher Award

Assist. Prof. Dr. Flora Hajiyeva | Nanotechnology | Best Researcher Award

Baku State University | Azerbaijan

Dr. Flora Hajiyeva is a distinguished scientist from Azerbaijan and an Associate Professor at the Department of Chemical Physics of Nanomaterials, Baku State University. She is highly regarded for her pioneering contributions in nano chemistry and nanotechnology, with a particular focus on the design, synthesis, and application of polymer-based nanocomposites. Throughout her career, Dr. Flora Hajiyeva has combined academic excellence with innovative research, exploring new frontiers in materials science, environmental nanotechnology, and functional nanomaterials. Her work reflects a unique integration of fundamental research and applied science, earning her recognition both nationally and internationally.

Professional Profile

Scopus

Google Scholar

ORCID

Education

Dr. Flora Hajiyeva began her academic journey at Baku State University, where she earned a Bachelor’s and Master’s degree in Chemistry, specializing in Analytical Chemistry. She then pursued advanced studies in nanomaterials, completing a Ph.D. in the Department of Chemical Physics of Nanomaterials. Building on her academic achievements, she was later awarded the title of Associate Professor and subsequently earned the degree of Doctor of Chemical Sciences in the field of nano chemistry and nanomaterials. Her educational path demonstrates a steady progression of academic excellence and dedication to specialized scientific research.

Experience

Her professional career has been deeply rooted in Baku State University, where she began as an assistant in the Department of Chemical Physics of Nanomaterials. She progressed to the role of lecturer, where she developed and taught a wide range of courses on nanotechnology, nano chemistry, atomic-force microscopy, and the ecological applications of nanomaterials. She has since advanced to the position of Associate Professor, leading major scientific projects, mentoring young researchers, and participating in international collaborations. Her experience reflects a balance of teaching, research, and leadership in scientific innovation.

Research Interest

Dr. Flora Hajiyeva’s research interests cover a broad spectrum of nanoscience. She has worked extensively on nano chemistry, nanotechnology, polymer nanocomposites, probe microscopy, and ion track nanotechnology. Her research often emphasizes the application of nanomaterials in ecological sustainability, such as environmental remediation and clean energy solutions. She has also investigated the structural, electrical, thermal, and optical properties of advanced nanocomposites, creating pathways for their application in electronics, photonics, and renewable energy. Her ability to link fundamental science with real-world applications has made her research both impactful and transformative.

Awards

Dr. Flora Hajiyeva has been honored with multiple prestigious awards in recognition of her outstanding contributions to science and education. She was awarded the President’s Prize of the Azerbaijan Republic for achievements in science and education, as well as the Commonwealth Debuts Award of the CIS countries. She is also a laureate of the Youth Award of the Azerbaijan Republic in the field of science. In addition, she has twice been recognized by the Rector of Baku State University for her research excellence. On the international stage, she has received the Best Lecture Award from the IEEE Nanotechnology Council, further highlighting her influence in advancing global scientific knowledge.

Publications

Dr. Hajiyeva has authored impactful publications in high-ranking journals. Her recent works include:

Title: Synthesis and characterization of magnetic nanocomposites for environmental remediation
Published on: 2016
Citation: 54

Title: Synthesis of Fe/Ni bimetallic nanoparticles and application to the catalytic removal of nitrates from water
Published on: 2019
Citation: 39

Title: Structure and properties of PP/TiO₂ based polymer nanocomposites
Published on: 2019
Citation: 30

Title: Role of phase interactions in formation of photoluminescent and dielectric properties of polymeric nanocomposites PP+ CdS
Published on: 2009
Citation: 27

Title: Effect of nano‐magnetite particle content on mechanical, thermal and magnetic properties of polypropylene composites
Published on: 2018
Citation: 26

Title: New magnetic polymer nanocomposites on the basis of isotactic polypropylene and magnetite nanoparticles for adsorption of ultrahigh frequency electromagnetic waves
Published on: 2018
Citation: 26

Title: Influence of magnetite nanoparticles on the dielectric properties of metal oxide/polymer nanocomposites based on polypropylene
Published on: 2018
Citation: 26

Conclusion

Dr. Flora Hajiyeva represents a rare combination of scientific vision, academic leadership, and innovative research. Through her extensive work in nano chemistry and nanomaterials, she has advanced the knowledge of polymer nanocomposites and their applications across multiple fields. Her efforts in environmental nanotechnology, energy systems, and advanced material design showcase her ability to contribute to both science and society. Recognized nationally and internationally with prestigious awards, she continues to inspire the next generation of scientists. Her achievements make her a highly deserving nominee for the Best Researcher Award, which would further acknowledge her remarkable contributions to global scientific progress.

Pratiksha Agnihotri | Nanotechnology | Best Paper Award

Dr. Pratiksha Agnihotri | Nanotechnology | Best Paper Award

Dr. Pratiksha Agnihotri is a dedicated physicist specializing in materials science, currently serving as a Project Officer at the Centre for Programmable Photonic Integrated Circuits and Systems (CPPICS) at IIT Madras, under the Ministry of Electronics and Information Technology (MeitY), Government of India. With a Ph.D. in Physics, she has authored 14 peer-reviewed international journal articles, focusing on high dielectric materials for energy storage devices. Her commitment to advancing energy storage technologies is evident in her innovative research and active engagement in academic mentorship and science outreach.

Professional profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

  1. Substantive Research Output:
    With 14 peer-reviewed publications, many in high-impact journals like Ceramics International, Emergent Materials, and Ionics, Pratiksha has demonstrated consistent and relevant contributions in the field of high dielectric materials and energy storage.

  2. Innovative Research Focus:
    Her work on KNN-based metal oxide composite thin films and Mo²⁺ substituted hexaferrites addresses cutting-edge materials for energy storage applications, a critical domain in sustainability and electronics.

  3. First-Author Contributions:
    She is the first author on the majority of her published papers, indicating lead contributions in design, execution, and manuscript preparation — a key criterion for Best Paper Awards.

  4. Interdisciplinary Impact:
    Her integration of impedance spectroscopy, dielectric analysis, and material synthesis techniques bridges physics, materials science, and electronics engineering, increasing the applicability and reach of her research.

  5. Recognition through Patents:
    Filing four patents demonstrates the originality and application-oriented nature of her work, adding a commercial and innovation dimension to her academic achievements.

  6. Institutional Affiliation:
    Currently affiliated with IIT Madras under the Ministry of Electronics and Information Technology (MeitY) — a national-level Centre of Excellence — provides credibility and underscores the national relevance of her work.

🎓 Education

Dr. Agnihotri’s academic journey reflects her deep commitment to physics and materials science. She earned her Ph.D. in Material Science from Shoolini University, Himachal Pradesh, India, in December 2025, achieving a CGPA of 8.2. Her doctoral research, titled “Optimization of Theoretical & Experimental Approach of KNN – Based Metal Oxide Composite Thin Film for High Dielectric Material,” encompassed advanced material characterization, solid-state physics, and dielectric properties. Prior to this, she completed her Master of Science in Physics from Shoolini University in June 2021 with a CGPA of 7.8, and her Bachelor of Science in Physics from Himachal Pradesh University in June 2019 with a CGPA of 6.78.

💼 Experience

Dr. Agnihotri brings a wealth of experience in both research and academia. Since December 17, 2024, she has been contributing to CPPICS at IIT Madras, where she creates and delivers project presentations, updates stakeholders on milestones, and fosters strong project relationships. In January 2023, she served as a teaching assistant at Shoolini University, providing homework assistance, motivating students, and collaborating to enhance learning outcomes. Her roles demonstrate her ability to bridge complex research with effective communication and mentorship.

🔬 Research Interests On Nanotechnology

Dr. Agnihotri’s research is centered on the synthesis and characterization of advanced materials for energy applications. Her interests include:

  • Oxide, Carbonate, and Ferrite materials

  • Synthesis of nanomaterials

  • Energy storage devices

  • Solar cells

  • Thermistor applications

  • Flexible electronic devices

She is proficient in various analytical techniques such as XRD, FESEM, Raman Spectroscopy, FTIR, Dielectric Spectroscopy, Modulus, Impedance, and AC Conductivity measurements. Her expertise extends to software tools like Origin, FullProf, VESTA, and ImageJ, which she utilizes for data analysis and visualization.

🏆 Awards & Patents

Dr. Agnihotri’s innovative work has led to the filing of several patents, including:

  • Mo²⁺ substituted Ba₀.₇Gd₀.₃MoxF₁₂₋ₓO₁₉ M-type hexaferrite-based nanomaterial and its preparation process.

  • Rietveld analysis and negative dielectric behavior of perovskite-like La₁₋ₓEuxMnO₃ ceramic system.

  • Pr³⁺/Mn²⁺ doped (Bi₀.₉₅Pr₀.₀₅)(Fe₀.₉₅Mn₀.₀₅)O₃ perovskite ceramic-based nanomaterial.

  • Gd-doped (BiFeO₃–BaTiO₃) multiferroic perovskite-based nanomaterial.

  • Dy³⁺/Mn²⁺ doped (Bi₀.₉₅Dy₀.₀₅)(Fe₀.₉₅Mn₀.₀₅)O₃ perovskite ceramic-based nanomaterial.

  • LiNbO₃ composite-based perovskite system substituted on KNN ceramic nanomaterial.

These patents underscore her contributions to the development of novel materials with potential applications in energy storage and electronic devices.

📚 Publications

Dr. Agnihotri has an impressive portfolio of publications. Here are some of her notable works:

Title: Exploring the structural and electrical trends in Mo²⁺ substituted Ba₀.₇Gd₀.₃MoxF₁₂₋ₓO₁₉ Hexaferrite
Authors: P Agnihotri, A Kumar, SS Parida, S Kumari, B Singh, R Hawaldar, R Rai
Year: 2024
Citations: 6

Title: Relaxation behaviour, conductive grains and resistive boundaries of bismuth-based double perovskite Bi₂₋ₓLaₓFeGaO₆
Authors: JP Nayak, P Agnihotri, S Kumari, P Kumari, P Kumar, R Rai
Year: 2024
Citations: 5

Title: Study the structural, electrical and ferroelectric behaviour of lead-free sodium potassium niobate (KNN) ceramics in view of energy storage capacity
Authors: P Agnihotri, R Hawaldar, R Rai
Year: 2024
Citations: 5

Title: Exploring the structural characteristics and electrical conductivity of MnTiO₃ across ferroelectric and paraelectric phases
Authors: P Agnihotri, R Hawaldar, M Singh, R Rai
Year: 2024
Citations: 5

Title: Investigation of structural and electrical properties of 0.90PbMn₁/₃Nb₂/₃O₃–0.10PbTiO₃ ceramics prepared via solid-state reaction
Authors: P Agnihotri, S Kumari, P Negi, P Kumar, P Kumari, R Hawaldar, R Rai
Year: 2024
Citations: 5

Title: Structural and dielectric characterization of BiLaCoGaO₆ double perovskite ceramic using x-ray diffraction and impedance spectroscopy
Authors: P Agnihotri, JP Nayak, P Kumar, R Rai
Year: 2024
Citations: 4

Title: Exploring impedance and modulus response of cobalt titanate in ferroelectric phase
Authors: NP Yadav, P Agnihotri, R Rai
Year: 2025
Citations: 3

Title: A comprehensive review of bismuth, lanthanum and strontium based double perovskites− Unravelling structural, magnetic, and dielectric properties
Authors: J Parsadnayak, R Jasrotia, A Kumarsharma, A Kandwal, P Agnihotri, …
Year: 2024
Citations: 3

Title: Synergistic effect of self-poled fibre based flexible lead-free KNN/P(VDF-HFP) nanofiber mat for scavenging piezoelectric energy
Authors: MSSK Gun Anit Kaur, Pratiksha
Year: 2022
Citations: 3

Title: Investigation of dielectric transitions and impedance behavior in solid solutions of (1–x) K₀.₄₁Na₀.₅₉Nb₀.₉₅₉Sb₀.₀₄₁O₃–x (Bi₀.₅K₀.₅TiO₃)
Authors: R Rai, P Agnihotri, S Kumari, M Dutta
Year: 2024
Citations: 2

Title: A spectroscopic ellipsometry study of TiO₂:ZrO₂ on TiN/Si thin films prepared by Chemical Beam Vapor Deposition
Authors: P Agnihotri, A Verma, A Saini, R Rani, W Maudez, E Wagner, G Benvenuti, …
Year: 2024
Citations: 2

✅ Conclusion

Dr. Pratiksha Agnihotri exemplifies the integration of rigorous scientific research with practical applications in energy storage and materials science. Her extensive academic background, combined with her hands-on experience in research and teaching, positions her as a valuable contributor to the scientific community. Her work not only advances the field of high dielectric materials but also inspires future innovations in sustainable energy solutions.