Volodymyr Hovorukha | Engineering | Best Researcher Award

Mr. Volodymyr Hovorukha | Engineering | Best Researcher Award

M.S. Poliakov Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine | Ukraine

Mr. Volodymyr Hovorukha is a prominent Ukrainian scientist whose pioneering contributions have shaped the fields of railway engineering, transport mechanics, and structural dynamics. As a Senior Researcher at the M.S. Poliakov Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine, he has made outstanding advancements in understanding the interaction between rail tracks and moving transport systems, the mechanics of deformation, and the reliability of rail infrastructure. His scientific achievements encompass the development of over ten mathematical models addressing dynamic rail–vehicle interaction, wear processes, and derailment safety, particularly under the influence of friction modifiers. He has authored more than 240 scientific papers, including publications indexed in international databases such as Scopus, and four monographs registered with ISBN. Mr. Volodymyr Hovorukha holds 32 patents, three of which have been officially recognized as international discoveries in railway transport. His innovative research has led to the creation of modernized track structures, high-speed rail fastening systems, and reinforced concrete components for both surface and underground transport systems. Under his scientific leadership, over 200 projects have been successfully developed and implemented, significantly contributing to the modernization of Ukraine’s rail infrastructure. His findings on the deformation mechanics of track elements and materials have become the foundation for optimizing the durability and safety of rail systems. An active member of ASME International and the International Academy of Scientific Discoveries and Inventions, Mr. Volodymyr Hovorukha’s research continues to influence railway engineering innovation and infrastructure development globally.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

  1. Hovorukha, V., Hovorukha, A., Sobko, T., & Semyditna, L. (2025). Reliability improvement of track infrastructure in open-pit rail transport. Geo-Technical Mechanics, (173), 38–48. https://doi.org/10.15407/geotm2025.173.038

  2. Hovorukha, V. V., & Hovorukha, A. V. (2023). Improvement of the service life of mining and industrial equipment by using friction modifiers. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 74–82. https://doi.org/10.33271/nvngu/2023-4/074

  3. Hovorukha, V., Hovorukha, A., & Makarov, Y. (2022). Research on the dynamic processes of vehicles and an arbitrary configuration rail track, influencing the side wear of the rail head and wheel flange contact surfaces at different values of friction coefficient between them. IOP Conference Series: Earth and Environmental Science, 970(1), 012029. https://doi.org/10.1088/1755-1315/970/1/012029

  4. Hovorukha, V., Hovorukha, A., Sobko, T., & Semyditna, L. (2022). Method for studying spatial vibrations of a vehicle during its movement along the rail track on separate supports with elastic-dissipative and inertial properties. Geo-Technical Mechanics, (167), 52–60.

  5. Hovorukha, V., Hovorukha, A., Makarov, Y., Sobko, T., & Semyditna, L. (2023, November 14–16). Investigation of residual deformations in joint zones of track sections under curved track operation conditions. In Proceedings of the XXI International Conference of Young Scientists: Geotechnical Problems of Mineral Deposit Development (pp. 145–150). Dnipro, Ukraine.

Nadiia Kopiika | Engineering | Best Paper Award

Dr. Nadiia Kopiika | Engineering | Best Paper Award

University College London | United Kingdom

Dr. Nadiia Kopiika is a distinguished civil and structural engineering researcher whose work unites innovation, sustainability, and resilience in the reconstruction of critical infrastructure. She is affiliated with University College London, London, United Kingdom, and serves as a BA/CARA Research Fellow at the University of Birmingham (UK) and Teaching Assistant at Lviv Polytechnic National University (Ukraine). Dr. Nadiia Kopiika has made exceptional contributions to developing advanced methodologies for damage assessment, probabilistic modelling, and structural rehabilitation of reinforced concrete structures. Her publication, “Probabilistic Assessment of RC Beams with Corroded Thermally Strengthened Reinforcement” (Structures, 2025), presents a comprehensive probabilistic framework for evaluating the reliability and residual capacity of corroded reinforcement systems, providing crucial insights for sustainable and data-driven restoration. According to Scopus, she has authored 34 indexed publications, accumulated 416 citations across 219 citing documents, and holds an h-index of 15, reflecting her growing impact in the global engineering community. Her work seamlessly combines analytical precision with practical applications in infrastructure resilience and recovery. Dr. Kopiika is also actively engaged in collaborative initiatives such as bridgeUkraine.org and MetaInfrastructure.org, advancing digital diagnostics, AI integration, and circular design for post-disaster reconstruction. Her achievements have been recognised through prestigious honours, including the Award of the Verkhovna Rada of Ukraine for Young Scientists (2024) and the BA/CARA Research Fellowship (2023–2026). Through her interdisciplinary research and commitment to sustainable engineering, Dr. Nadiia Kopiika continues to advance innovative frameworks for resilient, future-ready infrastructure systems worldwide.

Profile: Scopus | Google Scholar | ORCID | ResearchGate | LinkedIn

Featured Publications

  • Blikharskyy, Y., Kopiika, N., Khmil, R., Selejdak, J., & Blikharskyy, Z. (2022). Review of development and application of digital image correlation method for study of stress–strain state of RC structures. Applied Sciences, 12(19), 10157. [Cited by 56]
    https://doi.org/10.3390/app121910157

  • Kopiika, N., Karavias, A., Krassakis, P., Ye, Z., Ninic, J., Shakhovska, N., … (2025). Rapid post-disaster infrastructure damage characterisation using remote sensing and deep learning technologies: A tiered approach. Automation in Construction, 170, 105955. [Cited by 27]
    https://doi.org/10.1016/j.autcon.2025.105955

  • Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., & Blikharskyy, Z. (2021). Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. IOP Conference Series: Materials Science and Engineering, 1021(1), 012012. [Cited by 32]
    https://doi.org/10.1088/1757-899X/1021/1/012012

  • Blikharskyy, Y., Selejdak, J., & Kopiika, N. (2021). Corrosion fatigue damages of rebars under loading in time. Materials, 14(12), 3416. [Cited by 31]
    https://doi.org/10.3390/ma14123416

  • Blikharskyy, Y., Selejdak, J., Kopiika, N., & Vashkevych, R. (2021). Study of concrete under combined action of aggressive environment and long-term loading. Materials, 14(21), 6612. [Cited by 30]
    https://doi.org/10.3390/ma14216612