Jinbo Feng | Environmental and Sustainable Materials | Best Researcher Award

Mr. Jinbo Feng | Environmental and Sustainable Materials | Best Researcher Award

Shenzhen University | China

Mr. Jinbo Feng is a researcher in architecture at Shenzhen University, China, whose work focuses on sustainable building design, environmental comfort, and material innovation. His research integrates architectural theory with environmental technology, emphasizing thermal comfort optimization, self-insulating concrete development, solid waste recycling, and bionic design for marine ecological restoration. He has co-authored peer-reviewed studies, including the SCI Q2 article “Climate-Responsive Design for Sustainable Housing: Thermal Comfort, Spatial Configuration, and Environmental Satisfaction in Subtropical Void Decks” published in Buildings, and presented at the 16th International Conference on Environment-Behavior Studies (CEB-ASC) on residents’ perception of settlement spaces. His ongoing projects involve the thermal comfort study of overhead spaces in subtropical residential buildings, finite element modeling of thermal and mechanical behavior in insulating blocks, and bionic polymer reef design under the Shenzhen–Hong Kong Joint Funding Programme. Recognized with the Shenzhen University Special Award Scholarship and other academic honors, Feng demonstrates a strong commitment to advancing low-carbon, resource-efficient architectural solutions. His work contributes to bridging the gap between design aesthetics, engineering functionality, and environmental sustainability, promoting innovative strategies for climate-responsive architecture in rapidly urbanizing subtropical regions.

Profile: ORCID

Featured Publications

  • Feng, J., & [Mentor’s Name]. (2024). Climate-responsive design for sustainable housing: Thermal comfort, spatial configuration, and environmental satisfaction in subtropical void decks. Buildings. (SCI Q2).

  • Feng, J., & [Mentor’s Name]. (2024). A study of the correlation between the form of public space in settlements and the evaluation of residents’ perceptions. In Proceedings of the 16th International Conference on Environment-Behavior Studies (CEB-ASC), Nanjing University, China.

Spomenka Kobe | Environmental and Sustainable Materials | Distinguished Scientist Award

Prof. Dr. Spomenka Kobe | Environmental and Sustainable Materials | Distinguished Scientist Award

The Jožef Stefan Institute | Slovenia

Prof. Dr. Spomenka Kobe is a distinguished materials scientist and one of Europe’s leading experts in nanostructured materials, magnetic materials, and sustainable alloy design. Her pioneering research has advanced the scientific understanding and technological innovation in rare-earth magnet technology, nanostructured thin films, and magnetic materials recycling. She played a pivotal role in establishing rare-earth magnet research in Slovenia, leading major national and European research programs on critical raw materials and sustainable magnet production. Her Scopus-indexed research portfolio includes 169 publications, which have collectively received 2,350 citations from 1,949 documents, reflecting an h-index of 22. Her work spans critical areas of magnetism, solid-state physics, thin-film engineering, and microstructural analysis, significantly influencing global research directions in advanced materials science. Prof. Dr. Spomenka Kobe’s scientific leadership is exemplified through her coordination of the FP7 European Project ROMEO (Replacement and Original Magnet Engineering Option) and the International Associated Laboratory PACS2 (Push-Pull AlloyS and Complex Compounds) in collaboration with CNRS, France. She has also been a principal investigator on numerous EU and national R&D projects and an active contributor to international academic and industrial innovation networks. Her applied research achievements include seven patents (four European patents), three innovations, and multiple technology transfers to industrial production, showcasing her ability to translate advanced materials research into practical applications. She has authored several book chapters, delivered numerous invited lectures, and contributed to major international conferences on magnetic and nanostructured materials.

Profiles: Scopus | ResearchGate | LinkedIn

Featured Publications

• Schieren, L., Semsari Parapari, S., Tomše, T., Žužek, K., Šturm, S., Kobe, S., & Burkhardt, C. (2025). Evaluating citric acid as a selective leaching agent to extract Nd₂Fe₁₄B matrix phase from end-of-life magnets. Journal of Rare Earths, 43(7). https://doi.org/10.1016/j.jre.2025.04.020

• Grau, L., Moreno López, R., Kubelka, P., Burkhardt, F., Tomše, T., Kobe, S., & Burkhardt, C. (2024). Effects of thermal demagnetization in air on the microstructure and organic contamination of NdFeB magnets. Materials, 17(22), 5528. https://doi.org/10.3390/ma17225528

• Tomše, T., Burkhardt, F., Krasniqi, L., Ivekovič, A., Kocjan, A., Kobe, S., Podmiljšak, B., Burkhardt, C., Šturm, S., & Žužek Rožman, K. (2024, September). An alternative sintering strategy for anisotropic Nd–Fe–B magnet based on recycled content. International Materials Science and Engineering Congress (MSE 2024).

• Grau, L., Fleissner, P., Kobe, S., & Burkhardt, C. (2024). Processability and separability of commercial anti-corrosion coatings produced by in situ hydrogen-processing of magnetic scrap (HPMS) recycling of NdFeB. Materials, 17(11), 2487. https://doi.org/10.3390/ma17112487

• Tomše, T., Podmiljšak, B., Scherf, L. M., Kessler, R., Kobe, S., Kocjan, A., Šturm, S., & Žužek Rožman, K. (2024). Unravelling the intricacies of micro-nonuniform heating in field-assisted sintering of multiphase metallic microstructures. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2024.118405