Zhiqiang Wang | Computer Science and Artificial Intelligence | Best Academic Researcher Award

Dr. Zhiqiang Wang | Computer Science and Artificial Intelligence | Best Academic Researcher Award

North China University of Science and Technology | China

Dr. Zhiqiang Wang is a dynamic researcher specializing in intelligent control, industrial process optimization, and data-driven modeling, with a particular emphasis on complex mineral processing systems such as copper flotation. His work integrates advanced control theory, artificial intelligence, subspace identification, transfer learning, and machine vision to enhance stability, efficiency, and real-time decision-making within large-scale industrial environments. He has contributed notable innovations in intelligent optimization strategies, expert-knowledge-assisted control frameworks, flotation-foam image analysis for process evaluation, and adaptive control algorithms designed for systems with nonlinear, highly variable operating conditions. His research extends across intelligent manufacturing, big-data-driven industrial analytics, and cross-disciplinary automation technologies, advancing next-generation solutions for process monitoring, fault diagnosis, and operational optimization. He has been actively involved in major national research initiatives focusing on full-process industrial evaluation, intelligent control system development, and 5G-enabled optimization technologies for metallurgy and beneficiation. According to Scopus, Wang has authored 35 indexed publications, accumulated 403 citations from 348 citing documents, and achieved an h-index of 9, reflecting his growing academic influence in industrial automation and intelligent systems engineering. His publications in leading journals including ISA Transactions, IEEE Transactions on Instrumentation and Measurement, Canadian Journal of Chemical Engineering, and the International Journal of Control, Automation and Systems demonstrate his contributions to advancing data-driven modeling, feature engineering, and real-time operational control. Through sustained collaboration, innovative methodologies, and impactful research, Wang continues to advance the field of intelligent industrial process control and smart manufacturing technologies.

Profile: Scopus

Featured Publications

  • Wang, Z., He, D., Wang, Z., & Li, Q. (2025). Subspace identification method-based setpoints tracking control and its applications to the column cleaning process. ISA Transactions.

  • Wang, Z., He, D., Wang, Z., & Li, Q. (2023). Timeliness and stability-based operation optimization for copper flotation industrial process. IEEE Transactions on Instrumentation and Measurement.

  • Wang, Z., Peng, F., Li, Q., & He, D. (2023). State evaluation of copper flotation process based on transfer learning and a layered and blocked framework. Canadian Journal of Chemical Engineering.

  • Wang, Z., Zhang, X., & He, D. (2023). Dynamic global feature extraction and importance-correlation selection for the prediction of concentrate copper grade and recovery rate. Canadian Journal of Chemical Engineering.

  • Wang, Z., He, D., Zhang, Q., & Shi, J. (2020). Observer-based finite-time model reference adaptive state tracking control with actuator saturation. International Journal of Control, Automation and Systems.

Mahmoud Abd-Ellah | Computer Science | Best Researcher Award

Assoc. Prof. Dr. Mahmoud Abd-Ellah | Computer Science | Best Researcher Award

Egyptian Russian University | Egypt

Dr. Mahmoud Khaled Abd-Ellah is an accomplished Assistant Professor at the Faculty of Artificial Intelligence, Egyptian Russian University, Badr, Egypt, widely recognized for his pioneering research at the intersection of artificial intelligence, medical imaging, and deep learning. Holding a Ph.D. in Electrical Engineering from Minia University, his doctoral research focused on brain tumor diagnosis through MRI using advanced machine learning techniques. His impressive publication portfolio includes 22 Scopus-indexed papers, collectively cited 830 times by 774 documents, with an h-index of 12 demonstrating substantial scientific impact and research excellence. His scholarly work has been featured in leading journals such as Scientific Reports, Neural Computing and Applications, and Ecological Informatics, advancing AI-driven approaches for medical image analysis, automated brain tumor detection, COVID-19 classification, and environmental data modeling. Beyond research, Dr. Abd-Ellah actively contributes to academic governance and quality enhancement as a member of the Egyptian International Ranking Committee, head of the Quality Management Unit, and ranking official at the Egyptian Russian University. He is also an active member of multiple IEEE councils, engaging in the development and application of AI across engineering and biomedical domains. His ORCID profile (0000-0002-6840-2503) and Scopus ID (57191265348) further reflect his consistent record of impactful scholarship and international collaboration. With his interdisciplinary expertise, editorial service, and mentorship of Ph.D. and master’s students, Dr. Mahmoud Khaled Abd-Ellah exemplifies academic leadership, innovation, and a transformative approach to research that advances both science and society.

Profile: Scopus | Google Scholar | ORCID | ResearchGate

Featured Publications

  • Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318.

  • Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2018). Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks. EURASIP Journal on Image and Video Processing, 2018(1), 1–10.

  • El-Rawy, M., Abd-Ellah, M. K., Fathi, H., & Ahmed, A. K. A. (2021). Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques. Journal of Water Process Engineering, 44, 102380.

  • Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2016). Design and implementation of a computer-aided diagnosis system for brain tumor classification. In 2016 28th International Conference on Microelectronics (ICM) (pp. 73–76).

  • MostafaShokry, A. A. M. K., Awad, A. I., & Abd-Ellah, M. K. (2022). Systematic survey of advanced metering infrastructure security: Vulnerabilities, attacks, countermeasures, and future vision. Future Generation Computer Systems, 1–21.