Mehnaz Tabassum | Computer Science and Artificial Intelligence | Women Researcher Award

Dr. Mehnaz Tabassum | Computer Science and Artificial Intelligence | Women Researcher Award

University of Sydney | Australia

Dr. Mehnaz Tabassum is an accomplished researcher in Computational Neurosurgery and Health Innovation, with core expertise in medical image analysis, artificial intelligence, and brain tumor diagnostics. Her research integrates deep learning, radiomics, and neuroimaging to enhance the precision of tumor segmentation, classification, and recurrence prediction in neuro-oncology. Her scholarly contributions include 14 Scopus-indexed publications, with a total of 87 citations and an h-index of 4 (Scopus metrics). She has published in prestigious journals such as Cancers, European Radiology, and Neuro-Oncology Advances, and has presented her findings at leading international conferences including IEEE EMBC and IEEE ISBI. Dr. Mehnaz Tabassum’s recent research explores cross-modality medical image synthesis, MRI-to-PET generation using diffusion and GAN-based models, and meta transfer learning for brain tumor segmentation. Her innovative work advances computational solutions for precision medicine and AI-assisted neuroimaging. She has received multiple distinctions, including the Pro-Vice Chancellor’s Research Excellence Scholarship and the Henry Sutton Postgraduate Research Scholarship, alongside a Best Paper Award for excellence in scientific contribution. Her interdisciplinary research continues to impact the fields of AI-driven diagnostics, eye-tracking in medical imaging, and computational modeling for neurosurgical innovation, reflecting her commitment to advancing data-driven healthcare and translational neuroscience.

Profiles: Scopus | Google Scholar | ORCID | ResearchGate | Staff Page

Featured Publications

  • Tabassum, M., Suman, A. A., Suero Molina, E., Pan, E., Di Ieva, A., & Liu, S. (2023). Radiomics and machine learning in brain tumors and their habitat: A systematic review. Cancers, 15(8), Article 2034. https://doi.org/10.3390/cancers15082034

  • Ghose, P., Alavi, M., Tabassum, M., Ashraf Uddin, M., Biswas, M., Mahbub, K., … & Hassan, M. (2022). Detecting COVID-19 infection status from chest X-ray and CT scan via single transfer learning-driven approach. Frontiers in Genetics, 13, 980338. https://doi.org/10.3389/fgene.2022.980338

  • Moradizeyveh, S., Tabassum, M., Liu, S., Newport, R. A., Beheshti, A., & Di Ieva, A. (2024). When eye-tracking meets machine learning: A systematic review on applications in medical image analysis. arXiv preprint arXiv:2403.07834. https://arxiv.org/abs/2403.07834

  • Tabassum, M., Suman, A. A., Russo, C., Di Ieva, A., & Liu, S. (2023). A deep learning framework for skull stripping in brain MRI. Neurocomputing (Under review).

  • Afrin, F., Al-Amin, M., & Tabassum, M. (2015). Comparative performance of using PCA with K-means and fuzzy C means clustering for customer segmentation. International Journal of Scientific and Technology Research, 4(8), 70–74.

Mahmoud Abd-Ellah | Computer Science | Best Researcher Award

Assoc. Prof. Dr. Mahmoud Abd-Ellah | Computer Science | Best Researcher Award

Egyptian Russian University | Egypt

Dr. Mahmoud Khaled Abd-Ellah is an accomplished Assistant Professor at the Faculty of Artificial Intelligence, Egyptian Russian University, Badr, Egypt, widely recognized for his pioneering research at the intersection of artificial intelligence, medical imaging, and deep learning. Holding a Ph.D. in Electrical Engineering from Minia University, his doctoral research focused on brain tumor diagnosis through MRI using advanced machine learning techniques. His impressive publication portfolio includes 22 Scopus-indexed papers, collectively cited 830 times by 774 documents, with an h-index of 12 demonstrating substantial scientific impact and research excellence. His scholarly work has been featured in leading journals such as Scientific Reports, Neural Computing and Applications, and Ecological Informatics, advancing AI-driven approaches for medical image analysis, automated brain tumor detection, COVID-19 classification, and environmental data modeling. Beyond research, Dr. Abd-Ellah actively contributes to academic governance and quality enhancement as a member of the Egyptian International Ranking Committee, head of the Quality Management Unit, and ranking official at the Egyptian Russian University. He is also an active member of multiple IEEE councils, engaging in the development and application of AI across engineering and biomedical domains. His ORCID profile (0000-0002-6840-2503) and Scopus ID (57191265348) further reflect his consistent record of impactful scholarship and international collaboration. With his interdisciplinary expertise, editorial service, and mentorship of Ph.D. and master’s students, Dr. Mahmoud Khaled Abd-Ellah exemplifies academic leadership, innovation, and a transformative approach to research that advances both science and society.

Profile: Scopus | Google Scholar | ORCID | ResearchGate

Featured Publications

  • Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318.

  • Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2018). Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks. EURASIP Journal on Image and Video Processing, 2018(1), 1–10.

  • El-Rawy, M., Abd-Ellah, M. K., Fathi, H., & Ahmed, A. K. A. (2021). Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques. Journal of Water Process Engineering, 44, 102380.

  • Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2016). Design and implementation of a computer-aided diagnosis system for brain tumor classification. In 2016 28th International Conference on Microelectronics (ICM) (pp. 73–76).

  • MostafaShokry, A. A. M. K., Awad, A. I., & Abd-Ellah, M. K. (2022). Systematic survey of advanced metering infrastructure security: Vulnerabilities, attacks, countermeasures, and future vision. Future Generation Computer Systems, 1–21.