Ameneh Amani | Chemistry and Materials Science | Women Researcher Award

Dr. Ameneh Amani | Chemistry and Materials Science | Women Researcher Award

Bu-Ali Sina University | Iran

Dr. Ameneh Amani, an accomplished Iranian analytical chemist at Bu-Ali Sina University, Hamadan, Iran, specializes in electrochemistry, electrosynthesis, and electroanalysis, with a strong emphasis on green electrochemical methods, ionic liquids, and electrochemical oxidation mechanisms. Her research explores the electrosynthesis of organic compounds, electropolymerization, and electrochemical characterization of medicinal plant extracts for assessing antioxidant and biological activity. Dr. Ameneh Amani has authored and co-authored 36 peer-reviewed journal articles indexed in Scopus, accumulating 453 citations across 345 citing documents, and maintaining an h-index of 12. Her publications appear in prestigious journals such as Electrochimica Acta, Journal of Organic Chemistry, Journal of Electroanalytical Chemistry, Scientific Reports, New Journal of Chemistry, Tetrahedron, and Journal of the Iranian Chemical Society. Her notable works include pioneering research on phosphonium-based ionic liquids in chemical processes, symmetric and highly conjugated benzofuran synthesis, and thermodynamic and kinetic investigations of aminophenol oxidation. Through these studies, she has advanced innovative, sustainable, and mechanism-driven electrochemical methodologies. Dr. Ameneh Amani’s contributions extend beyond research publications. She has presented extensively at national and international chemistry conferences, including the Iranian Seminars of Analytical Chemistry, Physical Chemistry Congresses, and Biennial Electrochemistry Conferences, earning recognition for her insights into electrochemical oxidation mechanisms and herb–drug interaction studies.

Profiles: Scopus | Google Scholar | ORCID | ResearchGate

Featured Publications

  1. Khazalpour, S., Yarie, M., Kianpour, E., Amani, A., Asadabadi, S., Seyf, J. Y., et al. (2020). Applications of phosphonium-based ionic liquids in chemical processes. Journal of the Iranian Chemical Society, 17(8), 1775–1917. https://doi.org/10.1007/s13738-020-01874-3

  2. Nematollahi, D., Amani, A., & Tammari, E. (2007). Electrosynthesis of symmetric and highly conjugated benzofuran via a unique ECECCC electrochemical mechanism: Evidence for predominance of electrochemical oxidation versus chemical oxidation. The Journal of Organic Chemistry, 72(10), 3646–3651. https://doi.org/10.1021/jo070161r

  3. Beiginejad, H., Amani, A., Nematollahi, D., & Khazalpour, S. (2015). Thermodynamic study of the electrochemical oxidation of some aminophenol derivatives: Experimental and theoretical investigation. Electrochimica Acta, 154, 235–243. https://doi.org/10.1016/j.electacta.2014.12.014

  4. Sabounchei, S. J., Shahriary, P., Salehzadeh, S., Gholiee, Y., Nematollahi, D., et al. (2015). Pd(II) and Pd(IV) complexes with 5-methyl-5-(4-pyridyl) hydantoin: Synthesis, physicochemical, theoretical, and pharmacological investigation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 1088–1096. https://doi.org/10.1016/j.saa.2014.07.048

  5. Nematollahi, D., & Amani, A. (2011). Electrochemical synthesis of the new substituted phenylpiperazines. Journal of Electroanalytical Chemistry, 651(1), 72–79. https://doi.org/10.1016/j.jelechem.2010.11.029

 

Sergey Koroidov | Chemistry | Best Researcher Award

Dr. Sergey Koroidov | Chemistry | Best Researcher Award

Stockholm University | Sweden

Dr. Sergey Koroidov is a dedicated and innovative researcher currently working at the Department of Physics, Stockholm University. With a strong background in chemistry and environmental sciences, Dr. Koroidov has built a distinguished academic and research career spanning top-tier institutions in Sweden, Russia, and the United States. His research primarily focuses on the study of photochemical dynamics and electrochemical mechanisms, which are vital for sustainable energy solutions. Dr. Koroidov is also deeply involved in teaching, supervision, and institutional development, making him a versatile contributor to the global scientific community.

Professional profile👤

Google Scholar

ORCID

Scopus

Strengths for the Awards✨

Dr. Sergey Koroidov demonstrates outstanding credentials and contributions in the field of physical and materials chemistry, particularly in electrochemical processes and photochemical dynamics. He is currently a researcher at Stockholm University and has held prestigious positions and collaborations globally—including a postdoctoral fellowship at Stanford University and research visits to the Lawrence Berkeley National Laboratory. His leadership in supervising doctoral and postdoctoral researchers, as well as his consistent track record of high-impact publications (over 50 papers, including in Nature, Science, and PNAS with 2,684 citations and an h-index of 23) underscores his significant influence in the scientific community.

He has secured major grants, including from the Swedish Research Council, Wallenberg Foundation, and HORIZON-MSCA COFUND, and plays a key role in shaping institutional strategy as part of several committees, including MAX IV and VINNOVA’s SPIRIT project. His expertise in time-resolved spectroscopy, x-ray spectroscopy, and catalytic mechanisms places him at the cutting edge of sustainable energy research.

🎓 Education

Dr. Koroidov obtained his Ph.D. in Chemistry from Umeå University, Sweden, in 2014. Prior to that, he earned his combined B.Sc./M.Sc. degree in Environmental Chemistry from Moscow State Technical University, Russia, in 2005. His educational journey laid a robust foundation for his interdisciplinary research spanning chemistry, physics, and material science.

🧪 Experience

Dr. Koroidov’s academic and professional path includes a wide array of prestigious positions. Between 2015 and 2017, he served as a Postdoctoral Fellow at the PULSE Institute, Stanford University, under the mentorship of Prof. Dr. Kelly Gaffney. Prior to that, he worked as a researcher at Umeå University and as a visiting researcher at Lawrence Berkeley National Laboratory. His doctoral research was conducted at Umeå University under Prof. Dr. Johannes Messinger. His early career began as an engineer in the Projecting Research Centre of Water Cleaning in Kaluga, Russia. Since 2017, he has been a researcher and group leader at Stockholm University, contributing significantly to scientific discovery and student mentorship.

🔬 Research Interests On Chemistry

Dr. Koroidov’s research focuses on the intricate study of electrochemical and photochemical dynamics in transition metal catalysts. His work aims to unravel catalytic mechanisms that are key to producing energy resources and essential chemicals. By employing advanced techniques such as steady-state and time-resolved optical and x-ray spectroscopy, he seeks to pave the way toward a sustainable and energy-efficient future. His interdisciplinary collaborations further enhance the impact and reach of his research.

🏆 Awards & Fellowships

Dr. Koroidov’s outstanding work has been recognized with multiple prestigious awards. These include the 2023 Wallenberg Initiative Materials Science for Sustainability (WISE) funding, the 2023 HORIZON-MSCA COFUND grant, and a 2019 Swedish Research Council Starting Grant. He is also a recipient of the Wallenberg Foundation Postdoctoral Scholarship at Stanford University (2015), a Swedish Research Council International Postdoc Fellowship (2015), and travel and research scholarships from Umeå University and the Wallenberg Foundation during 2013–2014.

📚 Publications

  • Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature
    Authors: J Kern, R Alonso-Mori, R Tran, J Hattne, RJ Gildea, N Echols, C Glöckner, …
    Year: 2013
    Cited by: 505

  • Structure of photosystem II and substrate binding at room temperature
    Authors: ID Young, M Ibrahim, R Chatterjee, S Gul, FD Fuller, S Koroidov, …
    Year: 2016
    Cited by: 414

  • Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy
    Authors: J Kern, R Tran, R Alonso-Mori, S Koroidov, N Echols, J Hattne, M Ibrahim, …
    Year: 2014
    Cited by: 256

  • Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
    Authors: FD Fuller, S Gul, R Chatterjee, ES Burgie, ID Young, H Lebrette, …
    Year: 2017
    Cited by: 235

  • Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations
    Authors: M Görlin, J Halldin Stenlid, S Koroidov, HY Wang, M Börner, M Shipilin, …
    Year: 2020
    Cited by: 155

  • Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy
    Authors: KS Kjær, TB Van Driel, TCB Harlang, K Kunnus, E Biasin, K Ledbetter, …
    Year: 2019
    Cited by: 118

  • Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering
    Authors: K Kunnus, M Vacher, TCB Harlang, KS Kjær, K Haldrup, E Biasin, …
    Year: 2020
    Cited by: 113

  • Calcium Manganese Oxides as Oxygen Evolution Catalysts: O₂ Formation Pathways Indicated by ¹⁸O‐Labelling Studies
    Authors: D Shevela, S Koroidov, MM Najafpour, J Messinger, P Kurz
    Year: 2011
    Cited by: 108

  • L-edge x-ray absorption spectroscopy of dilute systems relevant to metalloproteins using an x-ray free-electron laser
    Authors: R Mitzner, J Rehanek, J Kern, S Gul, J Hattne, T Taguchi, R Alonso-Mori, …
    Year: 2013
    Cited by: 99

  • Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation
    Authors: S Koroidov, D Shevela, T Shutova, G Samuelsson, J Messinger
    Year: 2014
    Cited by: 80

📝 Conclusion

With an exceptional combination of academic rigor, innovative research, collaborative projects, and impactful teaching, Dr. Sergey Koroidov exemplifies the qualities of a world-class researcher. His deep commitment to understanding catalytic and energy-conversion processes places him at the frontier of sustainable material science. Dr. Koroidov’s contributions to science, education, and international collaborations make him a highly deserving candidate for the Best Researcher Award.